您当前的位置:检测资讯 > 科研开发

高能量密度锂电池正极材料开发策略

嘉峪检测网        2020-09-24 09:20

锂离子电池作为当前最重要的电化学储能器件之一,其应用范围已经从小容量电池在消费电子产品、电动工具上的应用,逐渐扩展到新能源电动汽车、电动船舶、电动飞机、机器人等新兴领域,这些领域不仅要求锂离子电池具有更大的容量,对其能量密度也不断提出更高的要求。最初,索尼公司1991年商业化的锂离子电池能量密度只有80W·h/kg;现如今,锂离子电池的能量密度已达到300W·h/kg。在过去,锂离子电池能量密度随时间的提升基本满足线性关系,但近年来,能量密度的提升速度逐渐放缓。目前,世界各国提出的锂电池发展计划大多按照能量密度线性提升的速度制定研发标。中国、美国、日本政府都计划在2020年开发出能量密度达400~500W·h/kg的电池原型器件,并在2025-2030年实现量产。锂离子电池能量密度的提升建立在不断优化现有材料并寻找新材料组合的基础上。材料的选择决定了锂离子电池能量密度的理论值。正负极材料是锂离子电池的活性储能材料,提升能量密度的本质在于提升正负极的电势差和材料的比容量。由于应用的多样性导致性能指标要求的多样性,锂离子电池未来还会是多种材料共同发展的局面。正极材料主要是对现有钴酸锂(LiCoO2)、三元层状(NCM/NCA)、富锂锰基(Li-rich或者OLO)、锰酸锂(LiMn2O4)、镍锰酸锂(LiNi0.5Mn1.5O4)正极材料的进一步优化和更新换代。

 

目前,商业化锂离子电池正极材料以钴酸锂(LCO) 、磷酸铁锂(LFP) 、锰酸锂(LMO) 、镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)为主。自2012年以来,商业化锂离子电池单体的能量密度已经由120 W·h/kg提升到300 W·h/kg,能量密度的提升得益于高比能正负极材料的发展。为了进一步提升锂离子电池的能量密度,正极材料需要从三方面考虑:一是开发低电位下能实现高比容量的正极材料,例如高镍正极材料;二是提高正极材料的脱嵌锂电位[1]从而实现更高容量,例如高电压的LCO、NCM和富锂锰基层状氧化物正极材料;三是开发工作电压高的正极材料,例如镍锰酸锂尖晶石正极(LNMO)。表 1 列出了部分正极材料的能量密度,可以看出高电压LCO(电压≥4.5 V) 、更高镍含量(Ni>0.80)或更高电压(电压≥4.35 V)的NCM和NCA、富锂(Li-rich)锰基正极材料以及无锂正极材料(例如S)是最有希望提高能量密度的发展方向。

高能量密度锂电池正极材料开发策略

 

钴酸锂正极

 

钴酸锂正极材料LCO是在消费类电子产品应用中占据主流的一款正极材料,理论容量为274 mA·h/g。常用的层状LCO为α-NaFeO2结构,属于六方晶系,晶格中O原子为立方密堆积排列占据6c位,Co和Li交替分布于O层两侧,分别占据氧八面体空隙的3b和3a位。商用LCO的电压已经由最初的4.2 V逐步提升到了4.48 V,目前研究人员正在开发 4.50 V、4.53 V、4.55 V、4.60 V等更高电压的LCO正极材料,随着电压进一步提升至4.5~4.6 V,LCO正极的比容量和相应电芯的能量密度也会继续提高 。但是高电压下脱锂造成了H3→M2相变,如图2所示,并且随着Li+脱出,Co3+不断被氧化成Co4+,且高度脱Li时Co4+溶解在电解液中,产生Co的溶出;另一方面高度脱锂时电子从O2-2p带逃逸形成高氧化性的氧,造成 LCO 表面析氧,引起安全性问题,同时导致结构不稳定并伴随着较大不可逆容量损失。现有的改性手段希望把H3→M2相变对应的电压平台提高,并利用体相和晶界掺杂以及表面包覆来减少Co溶出和表面析氧。

高能量密度锂电池正极材料开发策略

高能量密度锂电池正极材料开发策略

 

三元材料

 

NCM 和 NCA 正 极 材 料 的 理 论 容 量 约 为275 mA·h/g,具有类似于 LCO 的 α-NaFeO2结构。NCM又称为三元材料,根据其中Ni、Co、Mn元素的比例来划分,三元材料已由最初的NCM111逐步 换 代 成 NCM424、NCM523、NCM622、NCM721、NCM811、NCM90/0/5 等,这样的发展趋势是因为在NCM材料中Ni和Co是主要的活性材料,Mn在充放电过程中维持材料的稳定性,一般不参与电化学反应。考虑到Co的价格以及Mn的非活性或弱活性,Co、Mn含量应逐渐降低,Ni含量应不断提高(表3) 。图3展示了三元材料中Ni含量升高对电芯能量密度的影响。

高能量密度锂电池正极材料开发策略

Ni含量超过0.80的NCM和NCA正极材料,具有高比容量、低成本的优势,并且随着Ni含量的提升,比容量也会进一步升高。但是Ni含量的增加会造成表面残碱升高、阳离子混排加剧、强氧化性的Ni3+和Ni4+增多等诸多问题,材料的容量保持率和热稳定性都会降低,氧析出现象会更加明显,如图4所示。目前,主要从前驱体工艺、烧结工艺、掺杂和包覆等多个方面来改善高镍 NCM 和NCA的问题,其中Ni含量在0.8附近的高镍正极材料已经实现了商业化,目前大多数正极材料企业均已量产NCM811材料,其中包括容百科技、湖南杉杉新材料有限公司、北京当升材料科技有限公司、贵州振华新材料股份有限公司等,贝特瑞、厦钨新能源公司则实现了 NCA 的量产。部分企业使用NCM811正极搭配石墨负极,电芯能量密度已超过270 W·h/kg, 甚 至 达 到 了 300 W·h/kg, 远 高 于NCM622/石墨负极的 230 W·h/kg 和 NCM523/石墨。负极的200 W·h/kg。此外,更高镍含量的产品也在不断研发和改进中。目前的开发目标为 210~230 mA·h/g的可逆比容量,Ni90以上的正极材料已经可以实现这一容量目标,主要是其他指标的优化。为了提高稳定性,单晶化是NCM开发的一个共性技术。同时,类似于高电压钴酸锂的开发思路也适用于开发NCM高电压材料体系。开发高镍层状和中低镍高电压层状氧化物是目前互相竞争的两条技术路线,后者还需更长时间的验证以及其他高电压材料的匹配。

高能量密度锂电池正极材料开发策略

高能量密度锂电池正极材料开发策略

 

 

 

富锂锰基材料

 

富锂锰基正极材料由于其较高的比容量(250~400 mA·h/g) ,受到了越来越多的关注,其可逆比容量高达400 mA·h/g。富锂锰基正极材料的组成一般被认为是xLi2MnO3·(1−x)LiMO2(M为Mn、Co、Ni等) ,Li2MnO3属于单斜晶系,LiMO2属于六方晶系。富锂锰基正极材料的结构与合成工艺有关,有可能是单相固溶体,也可能是两相在纳米尺度的复合。大量研究认为,富锂锰基正极材料的首次充电过程分为两个阶段,第一阶段是电压在4.5 V以下时,锂离子从LiMO2的锂层脱出,对应Ni2+和Co3+的氧化;第二阶段是电压高于4.5 V时,Li2MnO3组分被激活,Li+从 Li2MnO3中脱出并伴随着 O2-的氧化。

 

富锂锰基正极材料具有高比容量、高工作电压、环境友好、低成本等优点,有望成为下一代高比能量电池的优选正极材料。在已知的锂离子电池材料体系下,目前只有富锂锰基正极材料搭配硅碳负极有望使锂离子电池电芯的能量密度达到400 W·h/kg以上;北京卫蓝新能源科技有限公司和中国科学院物理研究所的研究团队使用富锂锰基正极材料和超薄金属锂负极,开发出了质量能量密度大于500 W·h/kg的单 体 电 芯 , 且 该 电 芯 的 体 积 能 量 密 度 接 近1200 W·h/L,循环寿命可以达到100圈。富锂锰基正极材料的应用也存在着许多问题:①较低的离子电导率,限制了材料的倍率性能;②首次充放电的不完全可逆导致较低的库仑效率;③循环过程中的相转变导致容量和电压衰减;④高温高SOC下的胀气和析氧。

 

目前,富锂锰基正极材料还处于研发阶段,距离商业化仍有一段时间,针对其首周库仑效率低、安全性差、循环及倍率性能差等关键性问题,还需要进行深入的机理研究,未来有望批量应用在高能量密度锂离子电池中。值得注意的是,富锂锰基正极材料在低电压范围内表现出了非常好的循环性和热稳定性,未来有望与其他正极材料复合使用,这方面的应用有望更快进入市场。

高能量密度锂电池正极材料开发策略

 

未来

 

目前主流的正极材料中,磷酸铁锂(LFP) 、磷酸锰铁锂 (LFMP) 的现有比容量可达 160~165 mA·h/g,接近理论极限170 mA·h/g,比容量已经没有明显的提升空间;高电压锰酸锂(LMO)正极材料的比容量理论上尚有进一步提升的可能,钴酸锂(LCO) 、镍钴锰酸锂(NCM) 、镍钴铝酸锂(NCA)和富锂锰基(Li-rich)正极材料比容量的提升空间相对较大。图5展示了典型正极材料的充电截止电压、现有比容量以及理论比容量。当然,提升上述材料比容量的同时,还需解决材料稳定性、材料和电解质界面稳定性等问题,并进一步优化极片设计;高电压LCO、LMO以及富锂锰基正极材料的充电截止电压已超过传统液态电解质电压窗口的上限(目前是 4.50 V,参见图 5 虚线标注) ,需要现有电解质的改性或者逐步过渡到固态电解质。

 

现有的氧化物正极材料受限于其较低的理论容量,为了达到更高的能量密度,需要发展更高容量的正极材料,例如锂硫电池体系采用单质硫(或含硫化合物)为正极,硫单质是一种基于“转化反应”的正极材料,其理论比容量在 1675 mA·h/g,理论比能量可达到2600 W·h/kg。此外,单质硫廉价易得、环境友好等也使其具有商业化潜质。近年来,锂硫电池也取得了长足进展。2016 年,美国Sion Power 公 司 成 功 研 发 出 新 款 锂 硫 电 池(20 A·h@400 W·h/kg) ,可用在无人机上。锂硫电池体积能量密度较低,目前倍率特性、循环特性、高低温特性以及全寿命周期的安全性还有待显著提高,特别是高面容量的金属锂负极的解决方案目前还很不成熟。随着固态电解质技术越来越成熟,现有液态电解质体系面临的安全和使用寿命等问题,以及金属锂负极的问题有望得到进一步解决,这将为锂硫电池以及其他高容量无锂正极材料(如MnO2、FeS2、MoS2、CuF2、FeF3等)的应用打开大门。在上述的正极材料中,富锂锰基正极材料能够将锂离子电池单体的能量密度提升至400 W·h/kg以上,且相比于无锂正极材料,其商业化进程更快,是开发高能量密度锂电池除了高电压钴酸锂以及高镍正极材料之外,最具前景的正极材料。

高能量密度锂电池正极材料开发策略

分享到:

来源:电化学能源