您当前的位置:检测资讯 > 科研开发

二维液相色谱的分离基理

嘉峪检测网        2022-03-27 21:41

二维液相色谱(2D—LC)是将分离机理不同而又相互独立的两支色谱柱串联起来构成的分离系统。样品经过第一维的色谱柱进入接口中,通过浓缩、捕集或切割后被切换进入第二维色谱柱及检测器中。二维液相已经越来越多的应用到复杂样品的分析中,跟小编一起来看看什么是二维液相吧。

 

二维液相色谱通常采用两种不同的分离机理分析样品,即利用样品的不同特性把复杂混合物(如肽)分成单一组分,这些特性包括分子尺寸、等电点、亲水性、电荷、特殊分子间作用(亲和)等,在一维分离系统中不能完全分离的组分,可能在二维系统中得到更好的分离,分离能力、分辨率得到极大的提高。完全正交的二维液相色谱,峰容量是两种一维分离模式单独运行时峰容量的乘积。假如两种分离系统都有100的峰容量,那么良好的二维系统理论上可产生10000的峰容量。

 

二维液相色谱大多使用两支或多支色谱柱,并通过柱结合技术实现样品的柱间切换。柱切换通常可分为部分和整体切换两种模式。按切割组分是否直接进人二维中,二维分离又可分为离线和在线两种方式。早期的中心切割技术,大都先在容器中收集一维洗脱产物,再进样到第二维中。随着现代仪器的发展和适应自动化分离的需要,目前二维色谱大多采用在线方式,使一维洗脱产物(部分或全部)直接进入到第二维柱系统中进行分离分析。

 

部分模式即采用中心切割技术,只使第一维分离的部分感兴趣的组分进入第二维中进一步分析。为了将样品有效地转移到下一维柱系统中,必须先在第一维分离模式中用标准物进行实验,根据得到的分离信息设计切换程序。部分模式不能得到样品所有组分的信息,此外,还有操作繁琐、样品易损失与污染及可能降低分辨率等缺点。

 

整体模式即全多维液相色谱模式(comprehensive HPLC)。基于Giddings 的理论,一般认为全多维分离应满足3个条件:

(1)样品的每一部分都受到不同模式的分离;

 

(2)所有样品组分以相等的比例(100%或稍低一些,即并不要求100%分析物,只要分流的部分能代表所有样品组分信息即可)转移到二维及检测器中;

 

(3)在一维中已得到的分辨率基本上维持不变。“基本”指通过测量全二维中第一维轴上的某个特殊峰所对应的第一维的分辩率与一维情况相比减少不超过10%。其中,第一条和第三条说明了传统的中心切割技术与全二维的区别。

 

Schoenmakem等 认为在二维分离之前进行分流也可称为全二维分离,进一步拓宽了全二维分离的概念。

 

高效液相色谱法是一种新型物质分离检测技术,世界上约有80%的有机化合物可以用高效液相色谱法来分析测定。液相色谱仪是对物质或混合物的化学成分进行先分离,而后分析鉴定的实验室主要的分析仪器。

 

GI-3000XY血药浓度检测仪系统,是一个具有在线固相萃取的全智能四元低压梯度二维液相色谱系统,系统由前处理、自动进样系统、双四元梯度高压恒流泵系统、二维综合分离分析系统、UV紫外检测器六单元部分以及功能强大的色谱软件所组成。

 

二维液相色谱系统是通过多种阀控制接口技术,在一维液相色谱基础上,构建的集成化的多维液相色谱系统,系统构成示意图如下:

二维液相色谱的分离基理

 

二维液相色谱仪包括依次连接有第1固相萃取色谱柱的第1流道、第二流道、分析流道、废液流道、中间色谱柱(一级SPE固相萃取柱)、多流道切换阀以及寄存阀等,该二维液相色谱仪通过多流道切换阀与寄存阀之间阀的切换,可以改变中间色谱柱在流道中所处的位置,实现中间色谱柱的寄存功能。

 

该二维液相色谱仪采用第1级色谱柱实现在线固相萃取,分离后的截留部分暂缓寄存作为第二维液相系统的输入,再经二级分析色谱柱分离后,经过紫外检测器检测出物质成分及其含量,通过计算机合理控制,可实现第1维液相色谱与第二维液相色谱并行运行,同时进行不同样品的处理工作。可设计控制流路实现对各种阀门的分时控制,以实现不同分离方法下的系统运行及物质分离.缩短检测时间,提高检测效率。

 

固相萃取是当前常用的样品前处理技术,分为在线和离线两种方式,用于样品的净化、除杂和富集。离线固相萃取具有试剂用量少、易于SOP等优点。其缺点为SPE固相萃取柱仅能使用一次,操作麻烦。而在线固相萃取技术(online SPE)能把活化、平衡、除杂和洗脱等过程在封闭系统内自动化完成,减少人工操作带来的误差,减少处理过程污染,提高方法的准确性和精密度,不仅能大大加快样品的前处理过程,而且SPE柱可重复使用,总的分析成本将大大降低;更为关键的是在线SPE柱比离线SPE萃取管柱效更高,分离度更好,样品更干净,更易于终的高效液相(HPLC)分离。

 

分享到:

来源:Internet