您当前的位置:检测资讯 > 实验管理
嘉峪检测网 2022-08-14 23:12
离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,可以帮助实验室的小伙伴实现阴阳离子的分析,想要用好离子色谱,学习是少不了的,我们一起来学习一下关于离子色谱的如下知识吧。
检测原理
大多数电离物质在溶液中会发生电离,产生电导,通过对电导的检测,就可以对他的电离程度进行分析。由于在稀溶液中大多数电离物质都会完全电离,因此可以通过测定电导值来检测被测物质的含量。所以,离子色谱通用检测器主要以电导检测器为基础。离子色谱分离原理是基于离子色谱柱(离子交换树脂)上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。
仪器离子色谱流路图
图片抑制器主要起两个作用:1).降低淋洗液的背景电导,2).增加被测离子的电导率值,改善信噪比.
干扰进行微克/升级或更低浓度的分析时,污染是严重的问题,在测试的所有环节(采样、存储和分析)都必须非常小心,避免污染。与其它色谱法一样,当样品中某组分浓度非常高时,谱图中会对应产生很大峰,掩盖其它物质的峰并造成干扰,这种干扰通常可根据其它阴离子浓度,适当稀释样品而减小。对于用浓缩柱进样时,某些高浓度的强保留阴离子会起淋洗液的作用,可将弱保留被测阴离子洗脱下来,这种情况下适宜用大容积样品定量环直接进样。
离子色谱仪使用的注意事项
1、淋洗液
淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。
2、分离柱
分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。
为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm 过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。
分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。
3、高压泵
高压泵是离子色谱仪的动力源,其作用是将流动相输入到分离系统,使样品在分离柱中完成分离过程。离子色谱用的高压泵应具备下述性能:流量稳定、耐腐蚀、压力波动小、更换溶剂方便、死体积小、易于清洗和更换溶剂。高压泵工作正常的情况下,系统压力和流量稳定,噪音很小,色谱峰形正常。
4、抑制器
抑制器由3个抑制元件组成,这些元件应用于循环回路中的抑制作用,可利用硫酸进行再生及用纯净水进行冲洗,分析流路外再生, 可彻底去除有害物质。采用微填充床抑制器,其优为点:平稳提供H+,基线噪音低,适合各种浓度分析,耐高压、耐有机溶剂、耐重金属,耐腐蚀,噪音低,只有0.2-0.5nS。
抑制器要避免在未通液体时空转。淋洗液或再生液流路堵塞、抑制器饱和均会造成系统压力突然上升、背景电导率过高等问题。若经过较长时间后,抑制元件受到污染,平常使用的再生溶液无法再将其彻底清除干净,将导致基线大幅上升。
5、检测器
所有的离子化合物(有机离子、无机离子、强酸和强碱)以及可被解离的化合物(弱酸和弱碱)的水溶液都能够导电。电导检测器是以离子色谱流动相中电导的变化作为定量依据的。电导检测器测量双铂电极两端间的电导,离子在该双铂电极两端间迁移:阴离子向阳极迁移,阳离子向阴极迁移,从而测量溶液的电阻。电导与电阻成反比。电导检测器具有极好的温度稳定性,这样便可保证测量条件的重现性。
由于离子色谱仪是精密仪器,其日常维护与保养对于仪器的使用寿命及监测精度都有着重要的影响,因此离子色谱仪要经常用淋洗液冲洗色谱柱,防止分离柱堵塞、流动相有气泡的产生,在进行分析前要确保样品已经进行前处理,以保障仪器安全。离子色谱法具有选择性好、灵敏、快速、简便,可同时测定多组分,基于上述优点,离子色谱法已在环境监测领域得到广泛应用。因此了解一些关于仪器日常维护的知识,遇有故障时能够正确地判断并及时排除是十分重要的。
常见故障及解决方案
1、电导检测器常见故障有哪些?
电导检测器常见故障是检测池被污染。
故障原因:污染物主要来源于没有经过适当前处理的样品,如浓度过高、复杂的样品基体等。
故障现象:基线噪声变大,灵敏度降低。
处理方法:
1、用3 mol/LHNO3溶液清洗电导池,再用去离子水清洗电导池至pH值达中性;
2、用0. 001 mol/L KCI溶液校正电导池,使电导值显示为147μS。
2、系统压力增高该咋办?
压力增高一般都是因仪器部件发生堵塞引起的,当发现系统压力增高时应从流路的检测器端开始,逐一排查,以找到引起压力增高的具体单元。
(1)在线过滤器发生堵塞时,直接更换滤芯;
(2)色谱柱入口处滤膜堵塞时,应反接色谱柱用去离子水反复冲洗;
(3)单向阀和滤头堵塞后需将其卸下先用无水乙醇超声清洗15 min ~30min,以清除部件上粘附的有机物,再用去离子水清洗干净后放入1:1 的硝酸溶液中超声清洗15min,最后用去离子水反复清洗干净后按原方位安装好后使用。高压系统中常出现堵塞问题的部件有单向阀、滤头、在线过滤器、分离柱、保护柱等;
(4)检查管路中peek 头是否拧得过紧,否则也会导致压力增高。
3、分析泵常见故障咋处理?
分析泵常见故障是泵内产生气泡和漏液
故障现象:基线的噪声加大,色谱峰形变差(出现乱峰)。
处理方法:为分析泵提供充足的淋洗液,并且给淋洗液施加一定的压力(通常小于35 kPa)。对于容易产生气体的溶液可以先用真空脱气,然后用惰性气体在线脱气的处理方法;若泵漏液,可更换泵密封圈。
4、抑制器使用中的常见故障怎么排除?
抑制器在离子色谱仪中具有举足轻重的作用。抑制器工作性能的好坏对分析结果有很大的影响。抑制器最常见的故障是漏液,使峰面积减小(灵敏度下降)和背景电导升高。
(1)峰面积减小造成峰面积减小的主要原因有:微膜脱水、抑制器漏液、溶液流路不畅和微膜被玷污。抑制器长期不用,会发生微膜脱水现象,为激活抑制器,可用注射器向阴离子抑制器内以淋洗液流路相反的方向注入少许0.2mol/L的硫酸溶液。同时向再生液进口注入少许纯净水,并将抑制器放置半小时以上。抑制器内玷污的金属离子可以用草酸钠清洗。
(2)背景电导值高在化学抑制型电导检测分析过程中,若背景电导高,说明抑制器部分存在一定的问题。大多数是操作不当引起的。例如淋洗液或再生液流路堵塞,系统中无溶液流动造成背景电导偏高或使用的电抑制器电流设置的太小等。膜被污染后交换容量下降亦会使背景电导升高。而失效的抑制器在使用时会出现背景电导持续升高的现象,此时应更换一支新的抑制器。
(3)漏液抑制器漏液的主要原因是抑制器内的微膜没有充分水化。因此,长时间未使用的抑制器在使用前应让微膜水溶胀后再使用。另外要保证再生液出口顺畅,因此反压较大时也会造成抑制器漏液。另外抑制器保管不当造成抑制器内的微膜收缩、破裂也会发生漏液现象。
5、离子色谱柱该如何维护、保存?
色谱柱的保存色谱柱填充料的不同,其保存方法也各异。一般而言,大多数阴离子分离柱在碱性条件下保存,阳离子分离柱在酸性条件下保存。需长时间保存时(30天以上),先按要求向柱内泵入保存液,然后将柱子从仪器上取下,用无孔接头将柱子两端堵死后放在低温处保存。短时间不用,每周应至少开机一次,让仪器运行1-2h。
色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。
无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。
有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。
色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。
无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。
有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。
来源:Internet