编者按
光疗法因时空可寻址性、微创性和临床相对安全性而受到了广泛关注;光疗法在生物医学工程中不断发展,以对抗皮肤病以及情绪和睡眠障碍。由光疗剂的非特异性分布导致的靶向效率低是一个必须解决的重要问题。
天津大学常津教授研究团队在中国工程院院刊《Engineering》2022年第6期发表《光响应纳米材料在肿瘤治疗领域的应用》。文章指出光疗具有独特的优势,包括微创性和临床相对安全性,所以被认为是一种有前途的癌症治疗方法,但是光疗的治疗效果往往受到光穿透深度有限和光疗剂靶向作用低的限制。光响应纳米材料的出现为实现增强的光疗效力提供了一种可能的方法。文章综述了光响应纳米材料在癌症治疗中的生物医学应用进展,包括光热疗法、光动力疗法、光响应分子递送和光控联合疗法;文章旨在论证光响应纳米材料在癌症治疗中的重要性,并为扩大光疗的应用提供策略。
一、引言
近年来,光疗法因时空可寻址性、微创性和临床相对安全性而受到了广泛关注。早在1903年,现代光疗法的创始人Niels Ryberg Finsen就因使用阳光和紫外线(UV)辐射治疗皮肤病(寻常狼疮)而获得诺贝尔奖。从那时起,光疗法在生物医学工程中不断发展,以对抗皮肤病(如湿疹、银屑病和皮肤瘙痒)以及情绪和睡眠障碍(如季节性情感障碍、非季节性抑郁症和昼夜节律睡眠障碍)。在光治疗剂如光敏剂和光热转换剂(PTCA)的帮助下,光疗法也被证明是消融肿瘤的有效方法。
癌症光疗中常用的光源包括紫外线(100~400 nm)、可见光(400~760 nm)和近红外(NIR)线(760~1350 nm)。然而,由于对生物组织的吸收,广泛使用的紫外线和可见光的组织穿透深度有限,使得传统的光疗法局限于浅表肿瘤,并可能导致肿瘤复发和转移。此外,由光疗剂的非特异性分布导致的靶向效率低是一个必须解决的重要问题。光疗剂在治疗过程中的非靶向递送不仅会导致生物利用度低、疗效差,还会引起副作用。
随着纳米技术的发展,各种基于多功能纳米材料的光疗纳米制剂已被开发用于克服上述癌症光疗中的局限性。由于增强的渗透和滞留(EPR)效应,具有特定尺寸范围(20~200 nm)的纳米制剂在肿瘤组织中富集。因此,纳米材料具有作为载体将光敏剂、PTCA、药物和基因等治疗性分子递送至肿瘤组织,从而实现靶向治疗和联合治疗的潜力。为了解决光疗中光穿透深度有限的问题,NIR光响应纳米材料已被开发应用。例如,可以直接吸收NIR光并产生热量的PTCA已被用于NIR触发的光热治疗(PTT)。上转换纳米粒子(UCNP)可以吸收长波长的NIR光,并发射特定的短波长紫外线或可见光,以实现更深的穿透。因此,光响应纳米材料提供了克服光疗障碍和扩大光疗应用的可能性。
文章总结了用于癌症治疗的光响应纳米材料的最新进展(表1)。这些纳米材料可用于光热治疗、光动力疗法(PDT)、光响应分子递送和光控组合疗法(图1);还讨论了光疗法当前面临的挑战和前景。文章旨在强调光响应纳米材料在癌症光疗中的重要作用,并为进一步扩大其应用提供方向。
表1 光响应纳米材料在癌症治疗中的应用概述
图1. 光响应纳米材料在癌症治疗中的应用示意图。
NP:纳米粒子。
二、光响应纳米材料
用于癌症光疗的光响应纳米材料包括PTCA、纳米光敏剂和含有光响应部分的纳米平台。PTCA是一种可以吸收光能并将其转化为热量以引发癌细胞死亡的物质。一般来说,PTCA可以分为有机材料和无机材料两大类。常见的有机PTCA材料包括有机染料分子 [如吲哚菁绿(ICG)] 和有机纳米颗粒(如半导体聚合物纳米颗粒)。无机PTCA材料包括贵金属材料 [如金(Au)纳米材料]、过渡金属硫化物和氧化物 [如硫化铜(CuS)NP] 以及碳基材料(如氧化石墨烯)。
光敏剂可以被特定波长的光激活,产生活性氧(ROS),并通过局部氧化应激损伤癌细胞。光敏剂还分为有机光敏剂和无机光敏剂。有机光敏剂包括有机染料分子,如卟啉和吡咯硼(BODIPY);而无机光敏剂包括二氧化钛(TiO2)、氧化锌(ZnO)、石墨氮化碳(g-C3N4)等。
许多光响应纳米平台是通过利用光响应连接体设计和开发的,如偶氮苯。这些纳米平台可作为高效的纳米载体,用以实现光响应分子的递送。除了通过设计这种纳米平台来直接响应光之外,还可以通过级联策略进行响应。例如,由光热剂(PTA)和热敏连接剂组成的纳米材料可以对光照射做出响应。此外,光诱导的ROS的产生会导致一些化学键的断裂,如缩硫酮(TK)键,从而实现光触发的药物释放。
三、光热疗法
PTT是一种很有前途的治疗方法,在癌症治疗中具有微创和高治疗效果。在外部光线的照射下,PTCA吸收光能并将其转化为热量,从而杀死癌细胞。PTCA通常需要具有高NIR吸收和高光热转换效率。在过去的几十年里,各种基于纳米材料的PTCA,如金纳米材料、黑磷(BP)、碳化铌、石墨烯、金属/非金属化合物和有机染料,已被开发用于PTT。例如,El-Sayed等报道了金纳米棒(GNR)辅助的等离子体PTT是传统手术的潜在且有效的替代方案。此外,GNR辅助的PTT可以通过调节和重塑肌动蛋白丝和细胞连接蛋白来减少癌细胞的集体迁移。De Sio等报道了一种角蛋白涂层仿生金NP(Ker-AuNP),可用作等离子体PTT的高效PTCA。
Zhang等基于钆(Gd)整合的硫化铜(CuS)NP开发了一种无机纳米诊疗剂 [Gd∶CuS @牛血清白蛋白(BSA)NP] [图2(a)]。由于Gd∶CuS N的强NIR吸收和BSA修饰实现了良好的生物相容性,因此纳米诊疗剂(Gd∶CuS@BSA NP)可作为一种优异的诊疗剂用于体内光声(PA)/磁共振成像(MRI)指导的高效PTT。如图2(b)所示,在NIR激光照射下,Gd∶CuS@BSA纳米颗粒的温度明显升高,表明Gd∶CuS具有良好的光热效应。此外,Gd∶CuS@BSA NP在荷瘤小鼠体内24 h内显示出PA/MRI成像信号的持续增强 [图2(c)]。双模态成像促进了成像引导的光疗,导致有效的肿瘤消除。为了在体外验证Gd∶CuS@BSA NP的PTT效应,对SK-OV-3细胞进行了细胞毒性研究和活/死细胞共染色。如图2(d)、(e)所示,在激光照射下,肿瘤细胞的相对存活率明显降低,证明了Gd∶CuS@BSA的肿瘤消融效果。Gd∶CuS@BSA的光热效应也在体内得到了证实。如实时热图像 [图2(f)]所示,当用Gd∶CuS@BSA NP治疗时,肿瘤部位的温度升高了21 ℃,显著高于对照组的温度升高(6 ℃)。在NIR激光照射下,肿瘤显著消退,随后被完全消除 [图2(g)],这证明了PTT的显著肿瘤消融效果。
图2. (a)用于成像引导肿瘤PTT的Gd∶CuS@BSA纳米诊疗剂的示意图。MRI:磁共振成像。(b)用NIR激光照射(980 nm)的Gd∶CuS@BSA NP的水相Gd∶CuS @ BSA NP液滴和去离子水液滴的红外热图像。(c)在Gd∶CuS@BSA治疗前后SK-OV-3肿瘤的PA/MR双模态成像。(d)用Gd∶CuS@BSA NP和激光照射(980 nm, 0.6 W∙cm-2, 5 min)处理的SK-OV-3细胞的生存率。Ctrl:对照组(用0 μg mL-1 Gd∶CuS @ BSA NP处理)。(e)用不同制剂处理后活/死SK-OV-3细胞的荧光染色。(f)注射不同制剂并进行激光照射(980 nm, 5 min)的SK-OV-3肿瘤的体内热成像。(g)用不同制剂治疗的SK-OV-3肿瘤的生长曲线。经American Chemical Society许可,© 2016。
除了无机纳米材料外,有机纳米制剂在癌症PTT中也发挥着重要作用。例如,美国食品药品监督管理局(FDA)批准的ICG是一种高度生物相容的NIR有机染料,由于其在NIR光激发下的各种能级转换途径,已被广泛应用于PTT。此外,Pu等报道了具有用于增强癌症治疗的NIR光热效应的半导体聚合物纳米酶(SPN)。如图3(a)所示,SPN包含作为光热纳米传感器的半导体两亲性聚合物(PCB)和作为温度敏感酶的菠萝蛋白酶(Bro)。在NIR激光照射下,由于SPN的光热转换活性,局部温度升高,导致Bro的光热激活。因此,胶原蛋白(肿瘤细胞外基质中最丰富的蛋白质)被原位消解,导致SPN的肿瘤富集量提升和PTT增强。在808 nm激光照射下,PCB1-Bro基团的温度在体外 [图3(b)]和体内 [图3(c)]均明显升高,这证实了PCB1-Bro的高光热转换效率。此外,与没有激光照射的渗透深度相比,用NIR激光照射的PCB1-Bro的渗透深度明显增加,表明光热增强的胶原蛋白消解已经发生。如图3(d)所示,在Bro酶光热激活后,PCB1-Bro处理组的肿瘤荧光信号高于其他组,表明胶原蛋白的消解增强了PCB1-Bro的肿瘤富集。PCB1-Bro的有效积累进一步导致更高的肿瘤温度和更强的肿瘤生长抑制 [图3(c)、(e)]。
图3. (a)PCB 1-Bro在光热增强NP肿瘤中富集的示意图。EDC/NHS:1-乙基-3-(3-二甲基氨基丙基)碳二亚胺/N-羟基琥珀酰亚胺。(b)激光照射时不同样品的温度变化。(c)用不同制剂和激光照射(808 nm, 5 min)处理的4T1荷瘤小鼠的红外热图像。(d)用有/无激光照射的不同制剂处理的4T1荷瘤小鼠的实时荧光图像。(e)采用不同治疗方式的4T1肿瘤的生长曲线。经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2018。
由于PTT的优势,一些PTCA已经进入临床试验。2019年,一期试验的结果证明了一种涉及金-二氧化硅纳米壳的方法用于前列腺肿瘤的局部PTT消融的可行性。此外,为了进一步提高光穿透深度,NIR-II光响应PTCA越来越受关注。例如,Yang等开发了一种聚乙二醇接枝聚乙烯亚胺修饰的中空碳纳米球用于NIR-II激光激活的癌症PTT。
四、光动力治疗
PDT是一种经临床批准的疗法,用于癌症(包括浅表皮肤病变、食管肿瘤和肺部肿瘤)治疗已有40多年。PDT包含三个基本要素:氧气、光敏剂和光。数百种光敏剂已在临床或临床前被应用于PDT,包括卟啉、二氢卟酚和酞菁衍生物。在传统的PDT过程中,光敏剂将光能传递给周围的分子,以产生用于癌症治疗的细胞毒性ROS。有两种主要类型的光动力反应——I型和II型。在I型反应的机理中,三重态光敏剂通过电子转移直接与细胞底物反应,从而产生自由基。然后,生成的自由基与氧气(O2)反应产生氧化产物,包括超氧阴离子(O2‒)、过氧化氢(H2O2)和羟基自由基(·OH)。或者,在II型反应的机制中,三重态光敏剂将能量直接转移到氧(3O2)以产生高反应性的单线态氧(1O2)。大多数现有的PDT系统采用氧依赖的II型机制。
与其他常规治疗方法相比,PDT具有创伤小、操作空间准确、副作用小、无耐药性和恢复期短等优点。然而,PDT也有很大的局限性,包括肿瘤的乏氧状态、光敏剂的靶向效率低、光穿透深度有限等。此外,光敏剂的非特异性分布导致正常组织的光毒性,这必须加以考虑。由于对生物相容性和分子基序前沿轨道的严格要求,有效分子光敏剂的选择仍然有限。为了解决这些问题,已经开发了许多具有多种特性的新型光敏剂来增强PDT的功效。例如,通过连接ROS惰性分子基序,已经开发出具有优异ROS产生效率的多孔共价有机框架(COF)。为了增强PDT在深层组织中的效果,UCNP和光敏剂的组合是一种有效的方法。Xing等提出了一种通过将UCNP与石墨烯量子点(GQD)整合来实现高效PDT的策略。UCNP可以作为光传感器将NIR光转化为可见光用于光敏剂的激活,从而大大扩展了PDT的应用。
此外,一些研究表明,通过I型光反应产生的自由基可以放大PDT反应,特别是在乏氧条件下。基于此,Yoon等报道了一种纳米结构酞菁组装体(NanoPcA),这种组装体通过增强的I型PDT具有良好的抗菌效果。Jiang的研究小组开发了一种I型纳米剂,即二氢硫辛酸包覆的金纳米团簇(AuNC@DHLA),用于双光子抗癌PDT。在这种纳米制剂中,金纳米团簇由于优异的生物相容性和长的荧光三重态寿命而被用作有前途的光敏剂。在另一项研究中,Lin等道了一种基于5,10,15,20-四(对苯并甲酸)菌绿素(TBB)配体的纳米级金属有机框架(NMOF),用于通过I型和II型机制增强PDT [图4(a)]。作为一种纳米光敏剂,NMOF具有高光敏剂负载效率、多孔结构和固有生物降解性的独特性质。菌绿素在NIR区(700~850 nm)具有出色的吸收效果,可用于乏氧条件下的I型PDT。然而,菌绿素的PDT功效受到其对氧和光的不稳定性的显著限制。NMOF的结构有利于稳定菌绿素的配体,从而防止单分子光解和自猝灭。如图4(b)中的共聚焦激光扫描显微镜(CLSM)图像所示,Zr-TBB组产生了4种类型的ROS(O2‒、H2O2、·OH和1O2),证实了光诱导的I型和II型PDT过程的存在。因此,Zr-TBB对皮下4T1和MC38肿瘤显示出优异的体内抗肿瘤功效 [图4(c)]。
图4. (a)用于I型和II型PDT的在Zr-TBB中稳定的菌绿素配体示意图。(b)光照射后用不同配方处理的4T1细胞中ROS生成的CLSM图像。比例尺:20 μm。(c)用不同制剂治疗的4T1肿瘤和MC38肿瘤的生长曲线。经American Chemical Society许可,© 2020。
传统的光敏剂,如卟啉衍生物是疏水性的,并且倾向于在水溶液中聚集。光敏剂的聚集状态导致荧光猝灭,从而降低ROS的产生效率,并极大地限制PDT治疗的结果。为了解决这个问题,Chen等开发了一种基于卟啉纳米笼的单分子纳米光敏剂。由于纳米笼的刚性结构,光敏剂之间的π-π堆积相互作用被抑制,从而促进光敏效应。
聚集诱导发射(AIE)光敏剂的发展为克服传统光敏剂的猝灭效应提供了另一种策略。最近,Tang等提出了一种基于三种聚集诱导发光体的“1 + 1 + 1 > 3”协同策略。AIEgens具有相同的光敏剂骨架,但具有不同的靶向基团,分别靶向线粒体、细胞膜和溶酶体 [图5(a)]。如图5(b)所示,在4T1细胞摄取后,这三种AIEgens表现出与相应细胞器的良好共定位。研究发现协同治疗组的肿瘤抑制效果优于每种光敏剂单独使用的效果,这归因于协同PDT策略 [图5(c)]。
图5. (a)三种聚集诱导光敏剂的化学结构和协同增强PDT的示意图。(b)在用不同制剂处理的4T1细胞的CLSM图像中AIEgens的共定位。比例尺:20 μm。(c)用不同制剂处理的4T1肿瘤的生长曲线。(d)用于可活化PDT的AIE-PS脂质体的示意图。DSPE-PEG:二硬脂酰磷脂酰乙醇胺聚乙二醇2000;DMPC:1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱。(e)用不同制剂处理的耳朵中的血管。(a)~(c)经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2020;(d)、(e)经American Chemical Society许可,© 2019。
由于光敏剂的非特异性生物分布,大多数光敏剂在患者暴露在阳光下时会引发光毒性。为了降低光毒性,可活化的PDT是一种有前途的策略。例如,Li等开发了一种载有光敏剂的脂质体(AIE-PS@脂质体)以实现受控的光敏化。如图5(d)所示,包裹在脂质双层中的AIE-PS的光敏性处于“关闭”状态;然而,一旦AIE-PS脂质体到达肿瘤部位,AIE-PS被释放用于原位再聚集,导致活化的PDT。正如预期的那样,与对照组 [包括AIE-PS纳米聚集体和商业光敏剂二氢卟吩e6(Ce6)]相比,AIE-PS脂质体在激光和日光照射下表现出较低的光毒性 [图5(e)]。
五、光响应分子递送
癌症治疗中治疗剂的低靶向性导致在正常组织中不令人满意的疗效和严重的副作用。随着刺激响应型给药系统的发展,越来越多的基于聚合物和无机纳米材料的纳米载体已被开发用于实现药物、光敏剂、基因等的靶向给药。作为一种外部刺激,光具有独特的功能,用于控制治疗剂在精确位置的释放行为,并避免个体差异。例如,热响应纳米材料可以通过光热诱导的连接键断裂、纳米载体的结构变化、自由基生成和其他途径实现光触发药物输送。光敏剂在光照射下产生的ROS也可以通过触发ROS敏感化学键(如TK化学键)的裂解而实现按需给药。
Liang等开发了二氮嗪(DA)修饰的人血清白蛋白(HSA)纳米药物(称为HAS dNM),用于通过静电和疏水相互作用共同封装光敏剂(ICG)和前药替拉扎明(TPZ)[图6(a)]。如图6(b)所示,在405 nm激光照射下,DA基团转化为反应性卡宾部分,并与相邻的HSA dNM反应交联,导致ICG/TPZ@HSA dNM在肿瘤部位增强的富集和滞留。接下来,808 nm激光照射触发了高温和ROS的产生,用于肿瘤PTT和PDT。此外,PDT过程中的耗氧导致肿瘤乏氧加重和TPZ激活,从而实现协同治疗。体外和体内结果都证实了HSA dNM的光响应递送。在暴露于405 nm的激光后,具有DA修饰的HSA dNM的尺寸明显增加 [图6(c)],验证了紫外线触发的聚集行为。ICG/TPZ@HSA dNM在体内的肿瘤富集量由肿瘤与组织的荧光信号比率计算的成像对比指数(CI)来表示。紫外激光治疗组的CI值明显高于没有激光照射的对照组,证实了ICG/TPZ@HSA dNM的激光增强肿瘤富集行为 [图6(d)]。基于生物分布荧光图像,获得了一致的结果。如图6(e)所示,激光治疗后肿瘤的荧光强度显著增加。这种精心设计的ICG/TPZ@HSA dNM通过光诱导聚集和级联光疗/化疗,增强了ICG/TPZ的靶向输送,提高了抗癌疗效。
图6. 用于癌症治疗的光响应药物/光敏剂递送系统。
(a)通过激光(405 nm和808 nm)照射触发级联协同癌症治疗的ICG/TPZ@HSA dNM示意图。CT:化疗。(b)ICG/TPZ @ HSA dNM的405 nm激光诱导聚集的方案。(c)HSA dNM的尺寸随不同的连续激光照射时间的变化。(d)ICG/TPZ @ HSA dNM的肿瘤富集,由CI值表示。(e)ICG/TPZ @ HSA dNM在4T1荷瘤小鼠体内的生物分布。T/N:肿瘤与组织的荧光信号比;p.i.:注射后。经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2018。
除了药物和光敏剂的输送,纳米材料还可以用于基因治疗中基因表达的光控选择性激活。例如,光遗传学是光学和遗传学方法的结合,以精确控制特定细胞中蛋白质的表达,从而控制细胞内的生物过程和行为。与大多数依赖紫外线/可见光照射的光触发递送系统一样,光遗传学中光致动器的激活受到光穿透深度的严重限制。为了解决这个问题,UCNP可以作为一种纳米转换器,将具有较深穿透深度的外部NIR光转化为局部紫外线/可见光,用于体内光感受器的无创激活。
Chang等开发了一种上转换光遗传纳米系统,由UCNP、拟南芥黄素蛋白隐色素2(Cry2)及其相互作用伙伴Cib1质粒组成。UCNP在质粒DNA(pDNA)递送和光转化中都起作用。外部NIR光触发的局部蓝光发射非侵入性地诱导光感受器Cry2和Cib1相互作用,激活了癌细胞的凋亡信号通路。在另一项工作中,Chang的研究小组报道了一种基于介孔二氧化硅(mSiO2)@聚乙烯亚胺(PEI)纳米载体共轭上转换棒(UCR)的NIR控制基因递送系统 [图7(a)]。在NIR光照射下,外部NIR光被UCR转化为紫外线,从而引发邻硝基苄基的裂解 [图7(b)]。随后,载有基因的mSiO2@PEI纳米载体被释放用于基因递送 [图7(c)]。这项基因表达研究报告了基因在NIR光照射下被释放和表达,证实了在高空间和时间分辨率下光控精确调节的基因表达已经实现。
图7. 光响应基因的递送和表达。
(a)mSiO2@PEI基因纳米载体和UCR底物的合成步骤。APTES:3-氨丙基三乙氧基硅烷;TEOS:原硅酸四乙酯;PPA:聚丙烯酸。(b)由于邻硝基苄基的光裂解,mSiO2@PEI基因纳米载体从UCR底物的光触发释放的示意图。(c)在有或没有NIR激光(980 nm, 8.9 W·cm-2, 12 min)的情况下,用负载罗丹明的mSiO2@PEI纳米载体固定的基质的荧光图像。经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2015。
六、光控联合疗法
虽然近年来光疗技术得到了发展,但单一模式光疗(仅依赖于一种治疗方法)的一些缺点仍有待解决,如治疗持续性肿瘤的复发或转移。为了解决这一问题,将光疗与免疫疗法、基因疗法、化学疗法、化学动力学疗法(CDT)和其他治疗方法相结合,可以最大程度地发挥每种治疗模式的优势,实现互补的多模式治疗效果。
光免疫疗法可以消除原发性肿瘤并诱导宿主免疫以控制远处转移,被认为是治疗转移性癌症的一种有前途的策略。例如,Wang等开发了一种用于癌症光免疫疗法的基于可注射红细胞(RBC)的凝胶。在皮下注射咪喹莫特(R837)佐剂工程化红细胞后,由于渗透的血小板和凝血酶,自发形成水凝胶样组合物。原位形成的RBC凝胶的光热效应导致肿瘤的光消融和肿瘤相关抗原的产生,从而启动对癌症的适应性免疫反应。此外,释放的免疫佐剂R837可诱导强大且持久的免疫反应,以抑制癌症转移/复发。
Liang的研究小组开发了一种基于CuInS/ZnS(ZCIS)量子点(QD)的“一体化”纳米药物,用于PTT/PDT协同治疗。量子点因其高荧光强度和宽激发光谱而被广泛用于肿瘤诊断和治疗。ZCIS量子点在650~750 nm范围内的高吸收效应使得无创荧光/多光谱光学层析成像成为可能。此外,ZCIS量子点的光热和光动力效应可用于癌症治疗 [图8(a)]。
图8. 光控组合癌症疗法。
(a)在PTT和PDT的组合治疗中ZCIS QD的示意图。FL:荧光;MSOT:多光谱光声层析成像:US:超声波;∆T:温度升高。(b)基因治疗和PDT联合治疗中PB@PEI/HSP70‐p53‐GFP NP的示意图。(c)MPEG-(TK-CPT)-PPa在化疗和PDT联合治疗中的示意图。(a)经American Chemical Society许可,© 2016;(b)经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2018;(c)经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2020;(d)经Wiley-VCH Verlag GmbH & Co. KGaA许可,© 2019。
Chang等报道了一种基于人类HSP70启动子的普鲁士蓝(PB)纳米立方体的多功能纳米治疗剂(PB@PEI/HSP70-p53-GFP NP),用于NIR光触发的PTT/基因联合治疗。如图8(b)所示,由于PB纳米立方体的光热特性,HSP70启动子在温和的NIR激光(约41 ℃)照射下被激活,导致肿瘤抑制因子p53依赖性细胞凋亡。在强NIR激光照射下(约50 ℃),PTT和基因治疗都被激活。因此,协同抗肿瘤功效可以通过NIR激光照射来调节。
化疗与光疗相结合是实现协同治疗的另一个重要途径。Qian等开发了一种ROS反应性前药递送纳米平台,用于化疗和PDT的组合。如图8(c)所示,化疗药物喜树碱(CPT)和光敏剂焦脱镁叶绿素-a(PPa)与甲氧基聚乙二醇(MPEG)连接制备聚合物前药,进一步自组装成纳米药物。荧光PPa精确定位肿瘤部位并引导激光照射。接下来,由PPa介导的PDT过程产生的ROS破坏了聚合物和CPT之间的ROS响应TK键,导致CPT药物的受控释放。这种化学疗法和PDT的组合表现出比单一疗法更有效的抗肿瘤作用。
与PDT类似,CDT涉及产生用于肿瘤治疗的高氧化性羟基自由基。Tang等基于负载DHA的铁(Fe)-[4,4,4,4-(卟吩-5,10,15,20-四酰基)四(苯甲酸)](TCPP)NMOF和CaCO3矿化涂层构建了程序释放系统 [NMOF @双氢青蒿素(DHA)@碳酸钙(CaCO3)] [图8(d)]。肿瘤微环境的弱酸性导致CaCO3层溶解及Ca2+释放。一旦NMOF@DHA进入癌细胞,细胞内的高谷胱甘肽(GSH)水平导致Fe3+还原和TCPP活化;这是由NMOF骨架崩溃导致的。因此,NMOF@DHA@CaCO3能够实现Ca2+-DHA介导的肿瘤治疗、Fe2+-DHA介导的CDT和TCPP介导的PDT。
七、结论和未来展望
光诱导光疗由于微创性和轻微副作用而被广泛用于对抗癌症。然而,光疗的功效受到光穿透深度和光疗剂非靶向分布的限制。光响应纳米材料的出现为解决这些问题提供了一种有前途的方法,因为这种纳米材料具有特殊的性质,包括纳米尺寸、多功能表面修饰和可控合成。因此,通过光响应纳米材料的合理设计,增强了光疗效果。
文章综述了近年来用于癌症治疗的光响应纳米材料的研究进展,包括PTT、PDT、光响应分子递送和光控联合治疗。要实现精准的癌症光疗,加速临床转化,应考虑以下几个方面。
(1)光穿透深度的限制。光的穿透深度依赖于光的波长。紫外线和可见光由于有限的穿透深度而主要用于治疗浅表性皮肤病。此外,当光与组织相互作用时,光在很大程度上出现衰减,阻碍了光疗的应用,特别是在治疗深层组织肿瘤中。虽然碳纳米管的应用提供了一种增加光穿透深度的方法,但碳纳米管仍然具有转换效率低的缺点。与NIR-I窗口(750~1000 nm)相比,NIR-II窗口(1000~1350 nm)表现出较低的光散射、最小化的组织吸收和更高的最大允许激光暴露;因此,NIR-II窗口似乎是实现深层组织穿透深度的潜在候选。因此,NIR响应纳米材料在扩大光疗应用方面显示出巨大的潜力。
(2)潜在毒性风险。在光疗的光触发分子递送过程中,药物从纳米载体中不受控制地爆发式释放会导致短期毒性,而纳米材料缓慢和不完全代谢可能会导致长期毒性。此外,光响应纳米治疗剂的非靶向生物分布可能导致阳光照射诱导的全身毒性。为了实现精确可控的癌症光疗,理想的纳米药物应该只在肿瘤部位被激活,在正常组织中应该保持“关闭”状态。因此,开发能够响应肿瘤微环境的典型特征的可活化的光治疗剂是解决光毒性问题的有效方法。
(3)临床转化。为了实现多功能癌症治疗,纳米材料通常在设计和组成上都很复杂,这无疑给临床转化带来了困难。此外,由于一些新开发的纳米材料的未知毒性机制,这些纳米材料的临床应用需要复杂的毒性评估程序。
改编原文:
Xu Zhang, Sheng Wang, Guohui Cheng, Peng Yu, Jin Chang. Light-Responsive Nanomaterials for Cancer Therapy [J]. Engineering,2022,13:18‒30.