您当前的位置:检测资讯 > 科研开发
嘉峪检测网 2024-07-09 08:37
摘 要: 对基于碳点的荧光探针设计策略及其在传感领域的应用进行综述。介绍包括光致电子转移、分子内电荷转移、Förster共振转移、内滤效应、聚集猝灭和聚集诱导发射等多种设计策略及其机理,并对碳点荧光探针在重金属离子、抗生素、农药残留、生物小分子和肿瘤标志物等的检测应用进行详细论述。碳点荧光探针具有其独特优势,并已成功应用于多种分子传感,但其产率低、纯化时间长,高荧光性能的碳点缺乏等是未来亟需解决的问题。
关键词: 碳点; 荧光探针; 设计策略; 传感应用
重要的化学和生物信息的获取对人类探索化学和生命中各种现象的本质具有重要意义。荧光探针具有灵敏度高、选择性好、操作方便等优点,可对目标进行实时、无损分析,广泛应用于食品安全、环境保护、生化分析、药物检测、生物成像和疾病诊断等领域[1‒2]。荧光探针主要包括识别基团(识别/标记单元)、发光基团(信号响应单元)和连接桥三部分,其中识别基团决定了不同分析物的选择性,发光基团将识别信号转化为荧光信号[3‒4]。传统有机荧光染料具有较高的荧光量子产率,但其合成复杂,光稳定性差,Stokes位移较小,水溶性不佳。近年来,包括半导体量子点(QDs)、贵金属纳米簇和上转换纳米粒子在内的新型纳米荧光材料迅速涌现,依赖于独特的荧光和表面性质以及优异的水分散性,被广泛应用于传感和生物成像领域[5‒7]。然而,其中大多数材料含有重金属元素,极大地制约了生物相容性。
碳点(CDs)是一种粒径在10 nm以下的零维碳材料粒子,具有sp2或sp3杂化的晶型或无定型内核,表面拥有丰富的含氧基团,包括—OH、—COOH、—COH等[8]。碳点具有优异的生物相容性、稳定的结构和理化性质、独特的光学特性、表面基团丰富和碳源广泛易得等优点,已被广泛应用于能源、环境和生物医学等诸多领域[9]。在碳点诸多理化性质中,荧光发射被认为最重要的,目前对于发光机理有多种解释,其中量子限制效应、表面态、碳核态、分子荧光和协同效应是广泛被接受的发光机制理论[10‒11]。同时,可通过溶剂效应、浓度效应、pH值调节、杂原子掺杂和表面修饰等方面对碳点荧光性质进行调控[11‒12]。
笔者对碳点荧光探针的设计策略和在传感领域的应用进行总结,分析了所面临的一些挑战,期待为基于碳点荧光探针的开发与应用提供新的思路和方法。
1、 基于碳点的荧光探针设计策略
基于碳点的荧光探针的设计主要有光致电子转移(PET)、分子内电荷转移(ICT)、Förster共振转移(FRET)、内滤效应(IFE)、聚集猝灭(ACQ)和聚集诱导发射(AIE)等策略。
1.1 光致电子转移
PET系统由信号响应单元、连接桥和识别受体组成,通过受体和荧光团之间的电子转移影响荧光强度。根据电子传递方向,PET可分为a-PET和d-PET两类。Huang等[13]报道了基于碳点与四环素(TC)之间PET过程的多功能检测平台。TC在光诱导下达到激发态,电子瞬间从TC (电子供体)的HOMO轨道转移到CDs (电子受体)的HOMO轨道,CDs被激发的荧光团被还原,导致荧光强度下降,即a-PET。Ghosh等[14]将水热处理柠檬皮所得碳点与不同聚酰胺胺(PAMAM)树枝状大分子偶联得到CD-PAMAM偶联物(CDPs),其中CDP3可高选择性检测Cu(Ⅱ)。Cu(Ⅱ)与CDP3的胺基络合导致Cu(Ⅱ)的d轨道分裂,导致电子从CDP3的激发态转移到Cu(Ⅱ)的d轨道,导致荧光猝灭,猝灭率高达93%,即d-PET。因此,在a-PET中,受体的最高占据分子轨道(HOMO)的能级远高于荧光团,电子从受体转移到荧光团。对应地在d-PET中,电子转移是从荧光团的激发态转移到受体的最低未占据分子轨道(LUMO)。
1.2 分子内电荷转移
Zhang等[15]溶剂热处理2-硝基-4-氨基二苯胺合成了选择性的光气响应碳点,其表面胺基可与光气发生酰胺反应。碳点表面富电子的羟基/胺基与吸电子的硝基形成推拉电子体系,引发ICT过程产生荧光。当光气与表面胺基反应后,减少了胺基数量,同时引入羰基增加了吸电子基团,促进了电荷转移过程,导致发生红移,因此,电子给体(D)和电子受体(A)形成一个大的D-π-A共轭结构。分析物的加入可能会影响D或A的推或拉电子能力,从而导致荧光光谱的蓝移或红移。
1.3 Förster共振转移
Mahani等[16]报道了基于碳量子点(CQDs)的分子信标(MB)信号增强荧光共振转移(FRET)纳米生物传感器,用于荧光检测microRNA-21。在MB处于“off”状态下,CQDs的发射光谱与淬灭分子的吸收光谱的重叠,导致荧光信号很弱。将microRNA-21分子加入到样品中,发卡型的MB打开,CQD与猝灭分子距离增加,从而观察到CQD的荧光发射。Förster共振转移体系含有两个荧光团,分别作为能量供体和能量受体,这两个分子之间通过偶极-偶极耦合进行低辐射能量转移。此现象的发生需要两个基团的距离非常近,并且供体发射光谱和受体吸收光谱必须重叠。分析物的加入可能改变供体和受体之间的距离或改变供体或受体的吸收或发射光谱,从而干扰FRET过程,导致荧光波长和强度的变化。
1.4 内滤效应
He等[17]利用银纳米粒(AgNPs)与碳点之间的IFE,设计用于检测亚硫酸盐和亚硫酸氢盐(SO32-/HSO3-)的新型荧光探针(CDs-AgNP/H2O2)。由于AgNPs的吸收和CDs的激发之间的光谱重叠,CDs的荧光可以被AgNPs猝灭,H2O2通过氧化AgNPs减弱IFE,恢复荧光。然而,当SO32-/HSO3-存在时,可与H2O2发生氧化还原反应,导致荧光再次猝灭。值得注意的是,AgNPs与CDs距离较大,且存在AgNPs的情况下,CDs的荧光寿命基本不受影响,说明CDs与AgNPs之间没有能量转移。IFE同样需要荧光团与受体存在光谱重叠,但与FRET机理不同的是两者之间没有严苛的距离要求,且不存在能量转移过程,因此荧光寿命没有明显变化。
1.5 聚集猝灭
Wang等[18]设计合成了可重复利用的红色发射碳点(R-CDs),利用水诱导的R-CDs聚集猝灭现象,实现了乙醇含量的测定。这可归因于水分子对R-CDs的表面吸附,中和了部分负电荷,导致粒子间静电排斥力减弱促进聚集的发生。荧光团在稀溶液中表现出强烈荧光,但在高浓度或固态下荧光强度下降或消失,这种现象即聚集猝灭。ACQ探针主要受氢键、疏水效应、静电相互作用、堆积等影响。
1.6 聚集诱导发射
Wan等[19]微波合成了具有AIE特性的亲水性黄色荧光碳点(Y-CDs),其在水溶液中表现出微弱的黄色荧光(PLQY=6.14%),而在固态下荧光显著增强(PLQY=58.35%)。Y-CDs在溶液中的荧光发射强度随着不良溶剂组分的增加而持续增加,这是由于聚集可以抑制表面基团的运动,降低非辐射率。与ACQ相对的AIE是指分子在稀溶液中不发光,但在高浓度或固态下表现出强烈的荧光。分子内运动(RIM)机制是AIE的普遍机制:即在聚集状态下,AIE分子内键的振动和旋转受到周围分子的相互作用或自然物理约束的极大限制,从而抑制了非辐射衰减通道,导致高发光。
2、 基于碳点的荧光探针传感应用
荧光发射作为碳点最重要的性质,被广泛应用于能源、环境和生物医学领域。
2.1 重金属离子传感应用
重金属离子如Fe3+、Hg2+、Cu2+、Pb2+、Ag+、Au+、Cr3+、Al3+等广泛存在于工业废水中,对环境安全和人类安全存在巨大隐患[20]。金属离子可通过多种机理与碳点相互作用,对其荧光强度产生影响。在金属离子与CDs相互作用过程中,荧光增强很少被观察到,但荧光猝灭已被大量报道[21]。目前用于金属离子检测的探针已被大量报道,但是新的选择性、高灵敏、低成本的重金属检测器仍是必要的。
铁是人体必需微量元素,以Fe2+和Fe3+形式存在,过量的铁元素是导致多种疾病的重要因素,其中由不溶的Fe3+产生自由基危害更大。Shah等[22]选择铁离子螯合剂N-羟乙基乙二胺三乙酸(HEDTA)为原料,一步水热制备了N掺杂碳点,在0.76~400 μmol/L浓度范围内表现出良好的线性响应,检测限(LOD)低至0.16 μmol/L,表现出优越的灵敏性和选择性。柠檬酸/氨水衍生碳点表面含有丰富的—OH、—COOH、—NH2和—C=O等官能团,可轻易与Fe3+络合,从而限制电子转移导致CDs的荧光猝灭,虽然其LOD仅为0.9 μmol/L,但以此所制备的试纸和复合水凝胶相较于传统水溶液使用更加方便[23]。然而低激发波长限制了碳点的体内应用,Xu等[24]报道蓝/红双色发射碳点(DCDs),低激发波长下对Fe3+具有良好的响应,LOD低至0.067 μmol/L;而在高激发波长下表现出红色发射可用于细胞成像。Sun等[25]利用碳点修饰上转换纳米粒子作为荧光纳米探针(UCNPs@CDs)用于Fe2+/Fe3+共检测。基于番茄、秸秆、西瓜、梅子、哈密瓜等天然来源碳点也被报道用于Fe3+的荧光传感[26‒29]。
汞离子(Hg2+)作为毒性最强的重金属离子之一,在环境中容易积累,并沿食物链产生富集,对生态系统及人类健康产生潜在危害[30]。比率型荧光探针检测Hg2+,提高了检测灵敏度[31‒32]。Li等[33]合成了蓝色碳点和绿色碳点,提高了检测灵敏度,弥补了单个碳点的不足,对Hg2+有较好的选择检测效果,肉眼检出限可达0.05 μmol/L。Fan等[34]报道基于荧光试纸的传感器,与智能手机结合,实现了快速的视觉定量检测,降低分析时间和成本。有机汞化合物毒性远高于无机汞,Li等[35]利用去甲肾上腺素衍生碳点与金纳米粒子合成了具有高灵敏度的纳米酶复合物(NA-CDs/AuNPs),用作甲基汞(MeHg+)检测的新型比色探针,检出限为0.06 μg/L。区别于其他“on-off”型探针,Yadav等[36]构建碳点掺杂二氧化硅复合材料(CD@DFNS@SH),Hg2+存在时PET过程被破坏,导致CDs的红色荧光恢复。
铅离子(Pb2+)也是毒性最强的重金属元素之一。Liu等[37]以半胱氨酸偶联碳点与金纳米粒构建了“off-on”型FRET荧光探针,实现对Pb2+高选择性传感,LOD低至0.05 μmol/L。Wang等[38‒39]通过ZIF-8封装双碳点或利用GSH修饰金属无响应碳点构建了双发射比率型荧光检测平台,LOD分别为4.78 nmol/L和2.7 nmol/L,进一步提高了对Pb2+检测灵敏度。Yong等[40]以蓝藻为碳源实现碳点的克级制备,获得了具有三重发射的红光碳点(RCDs),在固态下具有良好的荧光,成功用作Pb2+和pH的可视化比率荧光传感器,实现了更为绿色高效的策略。而基于双发射碳点的比率型纸传感器的出现实现了对Pb2+的可视化检测,更好地适应多变的检测环境[41‒42]。Olorunyomi等[43]将金纳米粒子和巯基功能化碳点修饰在金属有机框架(MOF)表面,实现了对低水平重金属进行低水平响应。
基于碳点的荧光探针也广泛应用于Cu2+、Ag+、Al3+等其他金属离子的检测[44‒47]。相较于单离子响应探针,多金属响应的碳点可实现对复杂样本中多种重金属离子的同时检测[48‒50]。Xu等[51]过一步水热法合成氮硫共掺杂碳点(N,S-CDs),用于Fe3+和抗坏血酸(AA)的次序检测。Fe3+与碳点表面基团络合形成复合物,导致荧光的静态猝灭,LOD仅为57 nmol/L;而AA通过Fe3+还原为Fe2+有效地恢复了猝灭荧光,LOD为38 nmol/L。基于这种“on-off-on”策略,多样的探针被设计合成,可实现金属离子与其他物质的顺序检测,包括生物硫醇、阴离子、抗生素、抗坏血酸和鸟苷酸等[51‒55]。对于环境安全与公共健康而言,具有定量检测和清除的双重功能的荧光复合材料尤为重要,不仅可实现对金属离子高选择性测定,还可表面吸附生成稳定的复合物以实现清除[56‒58]。
2.2 抗生素传感应用
抗生素的误用及滥用产生并加剧了细菌的耐药性,严重威胁全球生物与环境健康。Dang等[59]制备了基于“on-off-on”策略高选择的N掺杂碳点,对铜离子和联吡啶进行次序检测,LOD分别为0.076 nmol/L和0.4 nmol/L。Cheng等[60]合成了具有橙色发光的水溶性N,S共掺杂碳点(N,S-CDs),基于IFE机制用作金霉素(CTC)和槲皮素的多功能检测平台,克服了短波长的缺陷,实现了水、牛奶样品中CTC和啤酒样品中槲皮素的检测,LOD分别为32.36 nmol/L和6.87 nmol/L,并用于细胞成像。此外,为增强碳点荧光强度,提高检测灵敏度,包括MOF、二氧化硅微球等多种纳米材料与碳点结合构建了新型传感材料[61‒62]。Fu等[63]将具有斯托克斯型和反斯托克斯型发射的双模CDs锚定在功能载体上,通过配位效应和信号放大效应提高荧光灵敏度。该荧光传感器具有下/上转换双激励多发射特性,可用于甲砜霉素(TAP)的精确、灵敏和选择性可视检测,下行通道和上行通道的LOD分别为1.9 nmol/L和0.9 nmol/L。此外,便携的基于碳点荧光探针智能手机集成荧光传感装置被用来替代昂贵的荧光分光光度计,使检测过程变得高效、经济,适应复杂多变的检测场景[55]。Zhang等[64]成功制备了基于N,P共掺杂碳点修饰铁基MOF,并与分子印迹聚合物(MIP)结合得到了新型荧光仿生传感探针(NH2-MIL-53&N,P-CDs@MIP),用于选择性检测CTC。在最佳条件下,NH2-MIL-53&N,P-CDs@MIP探针对LOD仅为0.019 μg/mL,更重要的是,利用该探针的便携性智能手机集成荧光传感装置实现了对CTC的定量测定,LOD为0.033 μg/mL。此外,基于散沫花、桂花叶、火龙果皮、圣罗勒、番木瓜籽、番茄茎等绿色来源碳点也被应用于抗生素检测[65‒70]。
2.3 农药传感应用
农药残留对生态系统和人类健康造成巨大威胁。酶抑制型探针已被广泛应用于农药的检测,农药作为酶抑制剂可间接影响荧光强度。乙酰胆碱酯酶(AChE)可催化乙酰胆碱(ATCh)生成含有巯基的硫代胆碱(Tch),Tch对金属离子有较高的亲和力,因此AChE在农残检测中被广泛应用[71]。基于Cu2+离子对碳量子点表面羧基的亲和力与硫代胆碱之间的竞争配位作用,Mahmoudi等[72]成功设计了AChE抑制型碳点荧光探针,并成功用于马拉硫磷和毒死蜱两种有机磷农药的高效检测,检出限分别为1.70、1.50 μg/mL。Li等[73]建立了双发射型罗丹明B修饰硫量子点(RhB-SQDs)传感平台,通过调节碱性磷酸酶(ALP)活性,对天然水样和蔬菜中有机氯农药2,4-D进行检测。底物对硝基苯磷酸盐(PNPP)经碱性磷酸酯(ALP)水解产生对硝基苯酚(PNP),由于IFE导致RhB-SQDs在455 nm处荧光猝灭,2,4-D通过抑制ALP中断酶促反应减弱IFE致使荧光恢复。然而,酶活性受多种因素影响,对检测的要求比较苛刻,且成本较高,因此无酶的农残探针亟待解决。通过掺杂策略改善碳点表面形态,协调荧光性质,借助自身官能团与农药分子之间的相互作用对荧光强度产生影响,从而达到定量检测的目的[74‒75]。Zhao等[76]水热处理聚丙烯酸和磷酸制备了橙色发光碳点,通过“on-off-on”模式定量分析Ag+和草甘膦,LOD分别为1.8 μmol/L和6.2 μmol/L。此外,为提高抗干扰能力,结合了MIP、多孔印迹微球(MIMs)、适配体、抗体等特异性识别单元的新型碳点荧光探针检测平台被大量报道,并成功用于多种样品的农残检测[77‒80]。Nair等[81]建立了硫掺杂石墨烯量子点(S-GQD)传感器,通过S-GQD-适配体复合物与适配体-氧乐果复合物的结构切换,可实现对氧乐果的高选择和超灵敏检测。简单来说,S-GQD通过与适配体形成复合物发生聚集导致荧光猝灭,当与适配体亲和力更高的氧乐果加入后,S-GQD-适配体复合物发生分解,S-GQD重新分散致使荧光恢复。该检测器对目标分子具有极高的灵敏度,LOD低至1 μg/mL,即使在多干扰混合的复杂样品中仍保持极高的选择性,更值得注意的是,S-GQD可通过简单处理进行回收,以便进一步利用。
2.4 生物小分子传感应用
碳点荧光探针还被广泛用于生物小分子检测。包括半胱氨酸(Cys)、同型半胱氨酸(Hcy)和谷胱甘肽(GSH)在内的生物硫醇在生物系统中普遍存在,体内生物硫醇水平异常与多种疾病相关[82]。Sun等[83]溶剂热处理3-二乙氨基苯酚制备了绿色发射碳点,并对其进行2,4-二硝基苯磺酰基(DNBS)共价修饰,得到功能化CDs (g-CD-DNBS)作为生物硫醇的纳米探针。添加生物硫醇后,探针的DNBS基团被硫醇基团去除,这导致绿色荧光逐渐恢复,Cys、Hcy和GSH检出限分别为69、74、69 nmol/L。然而,较小的Stocks位移制约了其体内应用。为此,Liu等[84]采取两步碳化法合成了新型碳点(Scy-CDs),Stokes位移达到106 nm,表现出敏感的“on-off-on”荧光行为。由于d-PET过程,Scy-CDs具有显著的pH依赖性行为,在pH值7.0~3.92范围内荧光猝灭,而加入Cys/Hcy后,d-PET被有效抑制,荧光完全恢复。值得注意的是,细胞定位实验显示碳点可用于溶酶体成像,表明Scy-CDs可在亚细胞水平上监测溶酶体H+和Cys/Hcy。碳点-金纳米簇复合材料所构建的比率型荧光探针具有减少外部干扰,提高检测灵敏性的特性[85],同时多种基于生物硫醇与金属离子亲和力的金属离子掺杂碳点也被用于生物硫醇检测[82‒86]。
多巴胺(DA)作为一种神经递质可调节大脑中多种生理过程,理想化荧光探针对于DA相关疾病的早期检测与治疗是必不可少的。Sangubotla等[87]制备了姜黄素衍生碳点,并对其进行3-氨丙基三乙氧基硅烷(APTES)功能化修饰,将漆酶共价固定在其表面,得到了新型生物探针(APTG-CDs),对多巴胺在0~30 μmol/L范围内呈显著的线性荧光猝灭,检出限为41.2 nmol/L,并在血清和脑脊液样本中表现出良好的实用性。Tang等[88]将N-[3-(三甲氧基硅基)丙基]乙二胺(AEATMS)与DA经温和缩合反应生成氨基硅烷功能化碳点(SiCDs),可直接用于探测多巴胺。金属或非金属掺杂的荧光/比色双模碳点传感器可实现无仪器检测,简化检测过程[89‒90]。
糖尿病严重威胁人类健康,迫切需要设计高灵敏度、高选择性、高可靠性的葡萄糖检测方法。Li等[91]利用可逆动态共价键将多羟基碳点组装在苯硼酸(PBA)分子刷修饰的磁性纳米颗粒上,制备了新型复合荧光探针,葡萄糖LOD低至0.15 μmol/L。葡萄糖在葡萄糖氧化酶(GOx)的作用下,被催化水解为H2O2和葡萄糖酸,通过监测反应生成物可间接检测葡萄糖[92]。Zhu等[93]开发了基于Ti3C2纳米片和红色发射碳点(RCDs)的高效检测传感器,Ti3C2通过IFE可有效猝灭RCDs荧光。利用GOx催化葡萄糖产生的H2O2氧化Ti3C2纳米片导致荧光恢复,从而实现葡萄糖的高灵敏定量检测。Rossini等[94]基于酶促反应的荧光碳点纸平台成功用于血清与尿液样本中葡萄糖检测。Zhang等[95]建立双模(比色法和荧光法)检测葡萄糖,并与智能手机结合,提高了检测便捷性。酶活性容易受到多种因素影响,对于检测要求较高,不利于复杂样本检测。Chao等[96]结合pH高度敏感的荧光探针与具有GOx活性的AgNPs,开发了用于葡萄糖检测的新型荧光探针,并通过绿色制备工艺制备了两种淀粉基固态材料。除上述的小分子外,碳点荧光探针也被广泛应用于尿酸、胆固醇、ATP、活性氮、H2S和维生素等其他生物小分子检测[97-102]。
2.5 肿瘤标志物传感应用
肿瘤标志物是一类可在血浆或其他体液中检测到的分子,可以预测肿瘤的行为。碳点依赖固有光学性质已成功用于多种肿瘤相关生物标志物的检测。Qi等[103]制备了高量子产率的荧光N,P共掺杂碳点(N,P-Cdots),利用抗原-抗体特异性识别选择性的对癌胚抗原(CEA)进行定量检测,最佳条件下LOD仅为1 nmol/L。Bharathi等[104]基于FRET开发了超灵敏的全石墨烯量子点(GQD)荧光探针,用于卵巢癌生物标志物人附睾蛋白4 (HE4)的定量检测。最佳条件下,比率型探针LOD低至4.8 pmol/L,具有4 pmol/L~300 nmol/L的超大动态范围。Han等[105]利用特异性抗体分别标记碳点和AgNPs,当HE4存在时,通过抗原-抗体相互作用形成CDs-HE4-AgNPs三明治复合物。基于金属增强荧光(MEF)效应,AgNPs可作为信号放大器,显著增强纳米平台荧光强度,实现对HE4的高效检测。Deb等[106]采取更为绿色的方法,通过微波处理甜橙汁合成了生物源碳点(OCD)并与IgG偶联,制得免疫传感器(IgG-OCD),用于血管内皮生长因子(VEGF)的检测。最佳条件下,该免疫传感器表现出较宽的线性范围(0.1 fg/mL~10 pg/mL),极高的灵敏度(LOD=5.65 pg/mL)和良好的抗干扰能力,并成功用于实际样本的检测。
除蛋白类标志物外,某些酶也在肿瘤细胞内过量表达。Sidhu等[107]制备功能化碳点(fCDs),可通过“on-off-on”策略实现对硫氧还蛋白还原酶(TrxR)的检测。碳点表面DTPA可与Cu2+络合导致fCDs的蓝色荧光淬灭,而在TrxR作用下DTPA的二硫键被还原,释放Cu2+强双齿螯合剂3-巯基丙酸将Cu2+带离CDs表面,CDs荧光强度恢复,表现出较强的抗干扰能力和亲和作用,LOD低至20 nmol/L。Behi等[108]通过JR2EC多肽偶联荧光碳点和AuNPs,设计了纳米生物平台用于检测唾液腺癌生物标志物金属蛋白酶-7 (MMP-7)。JR2EC多肽与MMP-7具有极高的亲和力,MMP-7的存在会导致JR2EC多肽裂解,从而破坏纳米探针结构,使得碳点猝灭的荧光恢复,该设计为生物标志物检测提供新的思路,通过不同的多肽序列,可用作通用的多类型诊断平台。Zhang等[109]报道了由单分子DNA结构和石墨烯量子点构成的功能性纳米复合材料,作为诊断探针检测活细胞中无嘌呤/无嘧啶核酸内切酶1 (APE1)。值得注意的是,在该探针中GQDs并不是作为荧光基团,而是作为猝灭剂屏蔽APE1作用前的荧光信号。少量的细胞APE1即可通过酶循环过程触发荧光信号大量累积,因此诊断探针敏感度极高(LOD=0.29 pmol/L),可通过不同细胞APE1表达水平区分同类型活细胞。
此外,某些分子也可作为标志物,用于肿瘤的早期诊断过程。Mahani等[16]报道了基于CQDs的分子信标(MB)信号增强FRET纳米生物传感器,用于荧光检测microRNA-21,为肿瘤的早期诊断提供了有价值的工具。Li等[110]利用茜素胭脂红制备了比率型荧光探针,用于高灵敏的区分正常细胞和癌细胞。Rajalakshmi等[111]制备了无金属荧光碳点(TAG-CDs),选择性检测前列腺标志物柠檬酸盐,该探针可轻易穿过细胞膜,实现对活细胞中柠檬酸的细胞成像,并对尿液样品中柠檬酸含量进行测定。
单一标志物的敏感性或特异性无法满足临床要求,而多标志物同时检测的探针则可弥补这一缺陷。He等[112]基于CDs与氧化石墨烯(GO)之间的FRET,并结合催化发夹自组装(CHA)开发了通用的检测方法。在没有目标物的情况下,CD标记的发夹DNA吸附到GO上,导致荧光猝灭,而目标物的引入可以触发CHA形成Y型双链DNA (dsDNA),从而恢复CD的荧光信号。该方法可用于前列腺特异性抗原(PSA)、CEA和ATP的检测,LOD分别为0.22 ng/mL、0.56 ng/mL和80 nmol/L。Wang等[113]结合氧化石墨烯量子点(GOQDs)和微流控芯片优势,开发了通用生物传感平台,可同时检测多种肿瘤生物标志物,该生物芯片能够在40 min内同时检测包括癌胚抗原CEA、癌抗原125 (CA125)、甲胎蛋白(AFP)、癌抗原199 (CA199)和癌抗原153 (CA153)等临床样本中的多种生物标志物,最重要的是,所需检测样品量仅为2 mL,同时具有极宽的线性定量范围(5 pg~0.5 mg)和较低的检出限(1 pg/mL)。Wang等[114]通过硅氧键结合树枝状介孔二氧化硅纳米颗粒(DMSN)和荧光碳点(CD560)制备了新型纳米荧光探针,采用荧光侧流免疫分析法(FLFIA)实现对肿瘤标志物CA125和HE4的双重检测。碳点的黄色荧光可以消除蓝色背景,提高检测灵敏度,而DMSN的存在不仅有利于CDs的稳定发光,同时起到信号放大的作用。
3、 展望
碳点作为一种新兴纳米材料,具有生物相容性好、表面基团丰富、理化性质稳定、碳源丰富易得的等诸多优点。相较于传统有机荧光染料和半导体荧光纳米材料,碳点表现出更为优异的水溶性、光稳定性和生物相容性,已成为新型荧光探针设计的热点分子。同时,碳点荧光探针的研究也面临诸多挑战:碳点合成产率较低,且纯化过程耗时较长,不利于探针的大规模制备;高荧光性能的碳点仍然缺乏,虽然有研究指出了协调荧光的方法,但其制备结果仍有不可控性。
总之,碳点荧光探针具有其独特优势,并已成功用于多种分子传感,期待对上述缺陷进行有效改进,为基于碳点荧光探针的开发利用提供新思路。
参考文献
1 SUN F,YANG L,LI S J,et al. New fluorescent probes for the sensitive determination of glyphosate in food and environmental samples[J]. Journal of Agricultural and Food Chemistry,2021,69(43): 12 661.
2 DUAN N,YANG S X. Research progress on multifunctional fluorescent probes for biological imaging,food and environmental detection[J]. Critical Reviews in Analytical Chemistry,2022: 1.
3 MENG W Q,SUN M X,XU Q Q,et al. Development of a series of fluorescent probes for the early diagnostic imaging of sulfur mustard poisoning[J]. ACS Sensors,2019,4(10): 2 794.
4 DOU W T,HAN H H,SEDGWICK A C,et al. Fluorescent probes for the detection of disease-associated biomarkers[J]. Science Bulletin,2022,67(8): 853.
5 SUN H,ZHOU P,SU B. Electrochemiluminescence of semiconductor quantum dots and its biosensing applications:A comprehensive review[J]. Biosensors,2023,13(7): 708.
6 SHARMA A K,PANDEY S,SHARMA N,et al. Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging[J]. Materials Science and Engineering:C,2019,99: 1.
7 LIN G G,JIN D Y. Responsive sensors of upconversion nanoparticles[J]. ACS Sensors,2021,6(12): 4 272.
8 WU J J,CHEN G L,JIA Y N,et al. Carbon dot composites for bioapplications:A review[J]. Journal of Materials Chemistry B,2022,10(6): 843.
9 KHAYAL A,DAWANE V,AMIN M A,et al. Advances in the methods for the synthesis of carbon dots and their emerging applications[J]. Polymers,2021,13(18): 3 190.
10 MALAVIKA J P,SHOBANA C,SUNDARRAJ S,et al. Green synthesis of multifunctional carbon quantum dots:An approach in cancer theranostics[J]. Biomaterials Advances,2022,136: 212 756.
11 DU F F,YANG L P,WANG L L. Synthetic strategies,properties and sensing application of multicolor carbon dots:recent advances and future challenges[J]. Journal of Materials Chemistry B,2023,11(34): 8 117.
12 ANSARI L,HALLAJ S,HALLAJ T,et al. Doped-carbon dots:Recent advances in their biosensing,bioimaging and therapy applications[J]. Colloids and Surfaces B:Biointerfaces,2021,203: 111 743.
13 HUANG J Y,LONG C C,ZHANG L,et al. Carbon dots for all-in-one detection and degradation:The role of photoinduced electron transfer[J]. Journal of Environmental Chemical Engineering,2022,10(6): 108 951.
14 GHOSH S,GHOSAL K,MOHAMMAD S A,et al. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy[J]. Chemical Engineering Journal,2019,373: 468.
15 ZHANG J,LI Y Y,HU J Y,et al. Rapid colorimetric and ratiometric fluorescence method for on-site detection and visualization of phosgene by amino-functionalized carbon dot-based portable droplet system[J]. Chemical Engineering Journal,2023,452: 139 173.
16 MAHANI M,MOUSAPOUR Z,DIVSAR F,et al. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21[J]. Microchimica Acta,2019,186(3): 132.
17 HE Y Y,WANG Y B,WANG S J. Carbon dot and silver nanoparticle-based fluorescent probe for the determination of sulfite and bisulfite via inner-filter effect and competitive redox reactions[J]. Microchimica Acta,2023,190(5): 190.
18 WANG C Z,LI J X,WANG X J,et al. Reusable red emission carbon dots based smartphone sensing platform for three-mode on-site real-time detection of alcohol content[J]. Sensors and Actuators B:Chemical,2023,397: 134 690.
19 WAN Z J,LI Y M,ZHOU Y Z,et al. High‐efficiency solid‐state luminescence from hydrophilic carbon dots with aggregation‐induced emission characteristics[J]. Advanced Functional Materials,2023,33(11): 2 207 296.
20 LANDA S D T,REDDY BOGIREDDY N K,KAUR I,et al. Heavy metal ion detection using green precursor derived carbon dots[J]. iScience,2022,25(2): 103 816.
21 BATOOL M,JUNAID H M,TABASSUM S,et al. Metal ion detection by carbon dots—A review[J]. Critical Reviews in Analytical Chemistry,2020,52(4): 756.
22 SHAH H,XIN Q,JIA X R,et al. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron(III) sensing[J]. Arabian Journal of Chemistry,2019,12(7): 1 083.
23 LIU Z,JIA R N,CHEN F,et al. Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe3+ responsiveness[J]. Journal of Colloid and Interface Science,2022,606: 567.
24 XU Y L,MO R X,QI C Y,et al. Dual-property blue and red emission carbon dots for Fe(III) ions detection and cellular imaging[J]. Rare Metals,2020,40(7): 1 957.
25 SUN Y L,ZHANG X P,ZHAO C X,et al. Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions[J]. Analytica Chimica Acta,2021,1 183: 338 973.
26 KAILASA S K,HA S,BAEK S H,et al. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications[J]. Materials Science and Engineering:C,2019,98: 834.
27 CHANG D,ZHAO Z H,SHI L H,et al. Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion,in vitro and in vivo imaging[J]. Talanta,2021,232: 122 423.
28 DU Y C,LI Y X,LIU Y L,et al. Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging[J]. Frontiers in Bioengineering and Biotechnology,2023,11: 1 187 632.
29 ZHU W S,GAO X F,YU X K,et al. Screening of multifunctional fruit carbon dots for fluorescent labeling and sensing in living immune cells and zebrafishes[J]. Microchimica Acta,2022,189(6): 223.
30 WANG Y,ZHANG L,HAN X Y,et al. Fluorescent probe for mercury ion imaging analysis:Strategies and applications[J]. Chemical Engineering Journal,2021,406: 127 166.
31 LONG R Q,TANG C,LI T,et al. Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging[J]. Microchimica Acta,2020,187(5): 307.
32 WANG P C,YAN Y,ZHANG Y,et al. An improved synthesis of water-soluble dual fluorescence emission carbon dots from holly leaves for accurate detection of mercury ions in living cells[J]. International Journal of Nanomedicine,2021,16: 2 045.
33 LI D Y,WANG S P,AZAD F,et al. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+[J]. Ecotoxicology and Environmental Safety,2020,190: 110 141.
34 FAN M M,PAN Z H,WANG C J,et al. Quantitative visual detection of mercury ions with ratiometric fluorescent test paper sensor[J]. Frontiers in Chemistry,2022,10: 859 379.
35 LI Q L,LI H,LI K X,et al. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme[J]. Journal of Hazardous Materials,2023,441: 129 919.
36 YADAV S,CHOUDHARY N,SONPAL V,et al. Engineering excitation-independent turn-on fluorescent probe for mercury:Functionalized dendritic silica doped with red-emissive carbon dots towards simultaneous detection and remediation with biosensing application[J]. Chemical Engineering Journal,2023,471: 144 715.
37 LIU G L,FENG D Q,QIAN Y L,et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods[J]. Talanta,2019,201: 90.
38 WANG X Q,GUO H,WU N,et al. A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,615: 126 218.
39 PAYDAR S,FEIZI F,SHAMSIPUR M,et al. An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+[J]. Sensors and Actuators B:Chemical,2022,369: 132 243.
40 YONG C,LEI Y,LIU Y H,et al. Mechanistic regulation of gram-scale synthesis of triple emission cyanobacteria-based carbon dots and visual ratiometric sensing applications[J]. Applied Surface Science,2023,623: 157 049.
41 GAO Y F,JIAO Y,ZHANG H L,et al. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor[J]. Journal of Materials Chemistry B,2019,7(36): 5 502.
42 WANG H Q,YANG L,CHU S Y,et al. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device[J]. Analytical Chemistry,2019,91(14): 9 292.
43 OLORUNYOMI J F,WHITE J F,GENGENBACH T R,et al. Fabrication of a reusable carbon dot/gold nanoparticle/metal-organic framework film for fluorescence detection of lead ions in water[J]. ACS Applied Materials & Interfaces,2022,14(31): 35 755.
44 ZHANG W J,LI N,CHANG Q,et al. Making a cup of carbon dots for ratiometric and colorimetric fluorescent detection of Cu2+ ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586: 124 233.
45 JIA J,WANG H L,QUAN R X,et al. Fluorescent and smartphone-assisted colorimetric dual-mode sensor for Ag+ detection based on orange-red emitting carbon dots[J]. Materials Today Chemistry,2023,33: 101 730.
46 ADOTEY E K,AMOUEI TORKMAHALLEH M,TASTANOVA L,et al. Ultrasensitive fluorescent carbon dot sensor for quantification of soluble and insoluble Cr(VI) in particulate matter[J]. Journal of Hazardous Materials,2024,462: 132 671.
47 ANSI V A,RENUKA N K. Antagonistic interaction of Pb2+-Al3+ ion pair with sugar derived carbon dots:Visual monitoring of Al3+ ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,593: 124 632.
48 PUDZA M Y,ABIDIN Z Z,ABDUL-RASHID S,et al. Selective and simultaneous detection of cadmium,lead and copper by tapioca-derived carbon dot-modified electrode[J]. Environmental Science and Pollution Research,2020,27(12): 13 315.
49 YARUR F,MACAIRAN J R,NACCACHE R. Ratiometric detection of heavy metal ions using fluorescent carbon dots[J]. Environmental Science:Nano,2019,6(4): 1 121.
50 HE Y Y,WANG Y B,MAO G N,et al. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions[J]. Analytica Chimica Acta,2022,1191: 339 251.
51 XU J Y,WANG Y S,SUN L L,et al. Chitosan and κ-carrageenan-derived nitrogen and sulfur co-doped carbon dots "on-off-on" fluorescent probe for sequential detection of Fe3+ and ascorbic acid[J]. International Journal of Biological Macromolecules,2021,191: 1 221.
52 PANG L F,WU H,FU M J,et al. Red emissive boron and nitrogen co-doped "on-off-on" carbon dots for detecting and imaging of mercury(II) and biothiols[J]. Microchimica Acta,2019,186(11): 708.
53 LIU Y L,ZHOU P H,WU Y L,et al. Fast and efficient "on-off-on" fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water[J]. Science of The Total Environment,2022,827: 154 357.
54 AHMED F,IQBAL S,ZHAO L,et al. "ON-OFF-ON" fluorescence switches based on N,S-doped carbon dots:Facile hydrothermal growth,selective detection of Hg2+,and as a reversive probe for guanine[J]. Analytica Chimica Acta,2021,1 183: 338 977.
55 ZHANG J H,WANG J,OUYANG F J,et al. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin[J]. Analytica Chimica Acta,2023,1 279: 341 837.
56 SONG Y,XIE R Y,TIAN M M,et al. Controllable synthesis of bifunctional magnetic carbon dots for rapid fluorescent detection and reversible removal of Hg2+[J]. Journal of Hazardous Materials,2023,457: 131 683.
57 GUO X,XU D,YUAN H M,et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A,2019,7(47): 27 081.
58 YANG X C,YANG Y L,XU M M,et al. Metal-ion-cross-linked nitrogen-doped carbon dot hydrogels for dual-spectral detection and extractable removal of divalent heavy metal ions[J]. ACS Applied Nano Materials,2021,4(12): 13 986.
59 DANG V D,GANGANBOINA A B,DOONG R-A. Bipyridine-and copper-functionalized N-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin[J]. ACS Applied Materials & Interfaces,2020,12(29): 32 247.
60 CHENG S J,ZHANG J Q,LIU Y M,et al. One-step synthesis of N,S-doped carbon dots with orange emission and their application in tetracycline antibiotics,quercetin sensing,and cell imaging[J]. Microchimica Acta,2021,188(10): 325.
61 YUAN M D,AN J,ZHANG G X,et al. In-situ nitrogen-doped carbon dots for fluorescence sensing of tetracycline antibiotic[J]. Ceramics International,2022,48(3): 4 047.
62 WU S X,CHEN C,CHEN J H,et al. Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin[J]. Journal of Materials Chemistry C,2022,10(41): 15 508.
63 FU J L,ZHOU S,WU X D,et al. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol[J]. Environmental Pollution,2022,309: 119 762.
64 ZHANG J N,LIU Y,CUI X Y,et al. A smartphone-integrated molecularly imprinted fluorescence sensor for visual detection of chlortetracycline based on N,P-codoped carbon dots decorated iron-based metal-organic frameworks[J]. Journal of Agricultural and Food Chemistry,2023,71(43): 16 303.
65 SHAHSHAHANIPOUR M,REZAEI B,ENSAFI A A,et al. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug[J]. Materials Science and Engineering:C,2019,98: 826.
66 LIU X Q,WANG T,LU Y,et al. Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin[J]. Sensors and Actuators B:Chemical,2019,289: 242.
67 JIA Y C,CHENG Z,WANG G H,et al. Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples[J]. Food Chemistry,2023,402: 134 245.
68 VIJEATA A,CHAUDHARY G R,CHAUDHARY S,et al. Label free dual-mode sensing platform for trace level monitoring of ciprofloxacin using bio-derived carbon dots and evaluation of its antioxidant and antimicrobial potential[J]. Microchimica Acta,2023,190(7): 258.
69 LADDHA H,YADAV P,SHARMA M,et al. Waste to value transformation:Converting carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water[J]. Environmental Research,2023,227: 115 820.
70 ARKIN K,ZHENG Y X,BEI Y Y,et al. Construction of dual-channel ratio sensing platform and molecular logic gate for visual detection of oxytetracycline based on biomass carbon dots prepared from cherry tomatoes stalk[J]. Chemical Engineering Journal,2023,464: 142 552.
71 LI H Q,DENG R,TAVAKOLI H,et al. Ultrasensitive detection of acephate based on carbon quantum dot-mediated fluorescence inner filter effects[J]. The Analyst,2022,147(23): 5 462.
72 MAHMOUDI N,FATEMI F,RAHMANDOUST M,et al. Development of a carbon quantum dot-based sensor for the detection of acetylcholinesterase and the organophosphate pesticide[J]. Heliyon,2023,9(9):e19551.
73 LI X Y,CHEN C,XU F F,et al. Novel dual-emission sulfur quantum dot sensing platform for quantitative monitoring of pesticide 2,4-dichlorophenoxyacetic acid[J]. Talanta,2023,260: 124 639.
74 HAN Y,YANG W X,LUO X L,et al. Cu2+-triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues[J]. Journal of Agricultural and Food Chemistry,2019,67(45): 12 576.
75 QIN L L,GUO Y J,LI L F,et al. Ratiometric fluorescent sensor based on hydrogen-bond triggering the internal filter effect for enzyme-free and visual monitoring pesticide residues[J]. ACS Sustainable Chemistry & Engineering,2023,11(30): 11 032.
76 ZHAO L,BAI Y F,WEN Y Q,et al. Orange-fluorescence carbon dots employed for the quantitative analysis of silver ions and glyphosine through the off-on mode[J]. Analytical Methods,2022,14(42): 4 230.
77 YUAN X Y,JIANG W,WANG J,et al. High-performance multiporous imprinted microspheres based on N-doped carbon dots exfoliated from covalent organic framework for flonicamid optosensing[J]. ACS Applied Materials & Interfaces,2020,12(22): 25 150.
78 WU M,FAN Y J,LI J W,et al. Vinyl phosphate-functionalized,magnetic,molecularly-imprinted polymeric microspheres' enrichment and carbon dots' fluorescence-detection of organophosphorus pesticide residues[J]. Polymers,2019,11(11): 1 770.
79 ZHAO Y T,RUAN X F,SONG Y,et al. Smartphone-based dual-channel immunochromatographic test strip with polymer quantum dot labels for simultaneous detection of cypermethrin and 3-phenoxybenzoic acid[J]. Analytical Chemistry,2021,93(40): 13 658.
80 WANG Y,ZHU F,YIN L,et al. Ratiometric fluorescent detection of pesticide based on split aptamer and magnetic separation[J]. Sensors and Actuators B:Chemical,2022,367: 132 045.
81 NAIR R V,CHANDRAN P R,MOHAMED A P,et al. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate[J]. Analytica Chimica Acta,2021,1 181: 338 893.
82 LI C M,QIN Z J,WANG M N,et al. Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging[J]. Analytica Chimica Acta,2020,1 104: 125.
83 SUN J J,WANG Q,YANG J J,et al. 2,4-dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells[J]. Microchimica Acta,2019,186(7): 402.
84 LIU Q L,NIU X Y,ZHANG Y,et al. Carbon dots for lysosome targeting and imaging of lysosomal pH and Cys/Hcy in living cells[J]. Nanoscale,2020,12(24): 13 010.
85 XIE X X,PENG Z Q,WANG Z Q,et al. Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots[J]. Talanta,2020,218: 121 214.
86 ZHOU X C,LI L,WANG Y H,et al. Nanozyme inhibited sensor array for biothiol detection and disease discrimination based on metal ion-doped carbon dots[J]. Analytical Chemistry,2023,95(23): 8 906.
87 SANGUBOTLA R,KIM J. Fiber-optic biosensor based on the laccase immobilization on silica-functionalized fluorescent carbon dots for the detection of dopamine and multi-color imaging applications in neuroblastoma cells[J]. Materials Science and Engineering:C,2021,122: 111 916.
88 TANG X Y,LIU Y M,BAI X L,et al. Turn-on fluorescent probe for dopamine detection in solutions and live cells based on in situ formation of aminosilane-functionalized carbon dots[J]. Analytica Chimica Acta,2021,1157: 338 394.
89 TIWARI A,WALIA S,SHARMA S,et al. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[J]. Journal of Materials Chemistry B,2023,11(5): 1 029.
90 WEI S S,LIU B Q,SHI X Y,et al. Gadolinium (III) doped carbon dots as dual-mode sensor for the recognition of dopamine hydrochloride and glutamate enantiomers with logic gate operation[J]. Talanta,2023,252: 123 865.
91 LI J,LI X j,WENG R Q,et al. Glucose assay based on a fluorescent multi-hydroxyl carbon dots reversible assembly with phenylboronic acid brush grafted magnetic nanoparticles[J]. Sensors and Actuators B:Chemical,2020,304: 127 349.
92 LV W X,WANG X,WU J H,et al. pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring[J]. Chinese Chemical Letters,2019,30(9): 1 635.
93 ZHU X H,PANG X,ZHANG Y Y,et al. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose[J]. Journal of Materials Chemistry B,2019,7(48): 7 729.
94 ROSSINI E L,MILANI M I,PEZZA H R. Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform[J]. Talanta,2019,201: 503.
95 ZHANG R L,LIU L,LI W,et al. Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose[J]. Colloids and Surfaces B:Biointerfaces,2023,222: 113 125.
96 CHAO D Y,CHEN J X,DONG Q,et al. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification,glucose detection,and two starch-based solid-state fluorescence materials[J]. Nano Research,2020,13(11): 3 012.
97 JIA Y,HU Y,LI Y P,et al. Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12[J]. Microchimica Acta,2019,186(2): 84.
98 CARDOSO M A,DUARTE A J,GONçALVES H M R. Carbon dots as reactive nitrogen species nanosensors[J]. Analytica Chimica Acta,2022,1 202: 339 654.
99 LI F,CHEN J,WEN J Y,et al. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots[J]. Sensors and Actuators B:Chemical,2022,369: 132 381.
100 ZHANG C C,ZHANG H,YU Y Y,et al. Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference[J]. Talanta,2019,197: 451.
101 YANG M,YAO J,SU B R,et al. "Three-in-one" platform based on Fe-CDs nanozyme for dual-mode/dual-target detection and NIR-assisted bacterial killing[J]. Journal of Materials Chemistry B,2023,11(25): 5 898.
102 XU Y,YU H M,CHUDAL L,et al. Striking luminescence phenomena of carbon dots and their applications as a double ratiometric fluorescence probes for H2S detection[J]. Materials Today Physics,2021,17: 100 328.
103 QI J R,HU M X,LI H X,et al. A novel method of synthesis of fluorescent carbon dots for supersensitive and selective detection of cancer markers[J]. Journal of Nanoscience and Nanotechnology,2018,18(12): 8 085.
104 BHARATHI G,LIN F R,LIU L W,et al. An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker[J]. Colloids and Surfaces B:Biointerfaces,2021,198: 111 458.
105 HAN C P,CHEN R Y,WU X Q,et al. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots[J]. Analytica Chimica Acta,2021,1 187: 339 160.
106 DEB A,NALKAR G R,CHOWDHURY D. Biogenic carbon dot-based fluorescence-mediated immunosensor for the detection of disease biomarker[J]. Analytica Chimica Acta,2023,1 242: 340 808.
107 SIDHU J S,SINGH A,GARG N,et al. Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells[J]. The Analyst,2018,143(8): 1 853.
108 BEHI M,NAFICY S,CHANDRAWATI R,et al. Nanoassembled peptide biosensors for rapid detection of matrilysin cancer biomarker[J]. Small,2020,16(16):e1905994.
109 ZHANG H,BA S,YANG Z Q,et al. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker APE1 in living cells[J]. ACS Applied Materials & Interfaces,2020,12(12): 13 634.
110 LI L,SHI L H,JIA J,et al. Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition[J]. ACS Applied Materials & Interfaces,2020,12(16): 18 250.
111 RAJALAKSHMI K,DENG T T,MUTHUSAMY S,et al. Prostate cancer biomarker citrate detection using triaminoguanidinium carbon dots,its applications in live cells and human urine samples[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,268: 120 622.
112 HE J H,CHENG Y Y,ZHANG Q Q,et al. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity[J]. Talanta,2020,219: 121 276.
113 WANG C H,ZHANG Y,TANG W,et al. Ultrasensitive,high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform[J]. Analytica Chimica Acta,2021,1 178: 338 791.
114 WANG Z X,DING S N. Duplex-immunoassay of ovarian cancer biomarker CA125 and HE4 based carbon dot decorated dendritic mesoporous silica nanoparticles[J]. The Analyst,2023,148(3): 683.
来源:化学分析计量