您当前的位置:检测资讯 > 实验管理

核磁共振波谱仪工作原理与特点

嘉峪检测网        2017-02-20 10:35

核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)是材料表征中最有用的一种仪器测试方法,它与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,广泛应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。目前核磁共振与红外、质谱仪等其他仪器配合,已鉴定了十几万种化合物。

 

NMR

红外

紫外

本质(相同)

分子吸收光谱

波长范围

1-1000μm

0.75-1000μm

200-800nm

信号来源

原子核能级间的跃迁

分子振动能级之间的跃迁

分子的电子能级的跃迁

核磁共振波谱仪工作原理

600MHz 固体核磁共振谱仪 型号:Agilent VNMRS-600

 

 

 

核磁共振谱仪工作原理

核磁共振谱来源于原子核能级间的跃迁。只有置于强磁场中的某些原子核才会发生能级分裂,当吸收的辐射能量与核能级差相等时,就发生能级跃迁而产生核磁共振信号。

用一定频率的电磁波对样品进行照射,可使特定化学结构环境中的原子核实现共振跃迁,在照射扫描中记录发生共振时的信号位置和强度,就得到核磁共振谱。核磁共振谱上的共振信号位置反映样品分子的局部结构(如官能团,分子构象等),信号强度则往往与有关原子核在样品中存在的量有关。

 

 

核磁共振谱仪特点

核磁共振波普法具有精密、准确、深入物质内部而不破坏被测样品的特点。此外,核磁共振是目前唯一能够确定生物分子溶液三维结构的实验手段。

核磁共振波谱仪工作原理与特点

核磁共振谱图

 

核磁共振波谱仪按工作方式可分为两种:

(1)连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱;

(2)脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。

 

连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、[k1] [WU2] 射频检测单元、数据处理仪器控制六个部分组成。

 

磁铁用来产生磁场,主要有三种:

种类

永久磁铁

电磁铁

超导磁铁

频率

60MHz

100MHz

200MHz以上

 

频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。

 

连续波核磁共振谱仪结构图

核磁共振波谱仪工作原理与特点

核磁共振波谱仪工作原理与特点

连续波核磁共振谱仪原理图

核磁共振波谱仪工作原理与特点

脉冲傅立叶变换谱仪原理图

核磁共振波谱仪优缺点

连续波NMR仪

PFT-NMR谱仪

单频发射,单频接收

强脉冲照射 自由感应衰减(FID)信号,计算机进行傅里叶变换NMR谱图

扫描时间长,单位时间内的信息量少,信号弱

光谱背景噪声小,测定速度高,可以较快地自动测定和分辨谱线及所对应的弛豫时间。

累加的次数有限,灵敏度仍不高

灵敏度及分辨率高,分析速度快

谱线宽, 分辨不佳, 得到的信息不多

固体高分辨 NMR,采用魔角旋转及其它技术 ,直接得出分辨良好的窄谱线。

 

用于动态过程、瞬时过程及反应动力学方面的研究;测量13C、14N等弱共振信号

 

 

 

测定对象元素

 

 

NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。

根据谱图确定出化合物中不同元素的特征结构。有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用最为广泛。

 

 

可测试的性能

 

除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用最多。

 

有机化合物结构鉴定

一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。

 

高分子材料的NMR成像技术 

核磁共振成像技术已成功地用来探测材料内部的缺陷或损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。

 

多组分材料分析

材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。

 

此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

 

 

核磁共振波谱仪设备厂家

 

 

世界第一台核磁共振波谱仪诞生于1953年,由美国Varian公司商用仪器研发,并于同年做出了第一台高分辨NMR仪。至今经历了天然磁体、电磁体、超导磁体三个阶段。

Bruker AVANCE III 800 超导高分辨核磁共振谱仪

 

主要的核磁共振谱仪生产商有:

德国Bruker  http://www.instrument.com.cn/netshow/SH103191/

美国Agilent  www.agilent.com.cn/

日本电子株式会社  www.jeol.co.jp/cn/

中国上海纽迈电子科技有限公司http://www.niumag.com/

 

傅里叶变换核磁共振波谱仪

 

型号:JNM-AL series 制造:JOEL Ltd (日本电子株式会社)

 

纽迈低场核磁共振成像分析仪NMI20

 

核磁共振谱仪疑难解答

 

1.元素周期表中所有元素都可以测出核磁共振谱吗?

不是。首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。

 

2.配制样品为什么要用氘代试剂?怎样选择氘代试剂?
因为测试时溶剂中的氢也会出峰,溶剂的量远远大于样品的量,溶剂峰会掩盖样品峰,所以用氘取代溶剂中的氢,氘的共振峰频率和氢差别很大,氢谱中不会出现氘的峰,减少了溶剂的干扰。在谱图中出现的溶剂峰是氘的取代不完全的残留氢的峰。另外,在测试时需要用氘峰进行锁场。由于氘代溶剂的品种不是很多,要根据样品的极性选择极性相似的溶剂,氘代溶剂的极性从小到大是这样排列的:苯、氯仿、乙腈、丙酮、二甲亚砜、吡啶、甲醇、水。还要注意溶剂峰的化学位移,最好不要遮挡样品峰。

 

3.解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同?
合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。

分享到:

来源:AnyTesting