您当前的位置:检测资讯 > 生产品管

质量工具 | DOE试验设计步骤与案例

嘉峪检测网        2016-12-20 00:25

 

 

无论在六西格码管理,还是在工程品质、科技研发等方面,试验设计都是我们常用来解决问题的方法,其应用可以说涵盖所有的行业。试验设计最开始是在农林方面的研究,所以我们现在的很多试验设计专用名词都源于此,BLOCK,区组的意思,其原始含义就是田地的四方块,随着研究的深入,逐步应用于机械、医药、化工等各个领域。试验设计的方法很多,根据具体的问题模型和目的我们可以选择适当的设计方法,如混合设计、曲面设计、裂区设计、田口设计、均匀设计等等。试验设计骈弃了以往单个因子逐步调整的做法,避免了忽视交互作用等方面的问题,从而更加系统有效的解决我们所关注的指标。区别于最初农林方面试验设计应用的是,我们可以在很多的行业中采用渐进的方法来采取试验设计方案,而不期望于一步到位。

 

DOE试验7大步骤

第一步:确定目标

我们通过控制图、故障分析、因果分析、失效分析、能力分析等工具的运用,或者是直接实际工作的反映,会得出一些关键的问题点,它反映了某个指标或参数不能满足我们的需求,但是针对这样的问题,我们可能运用一些简单的方法根本就无法解决,这时候我们可能就会想到试验设计。对于运用试验设计解决的问题,我们首先要定义好试验的目的,也就是解决一个什么样的问题,问题给我们带来了什么样的危害,是否有足够的理由支持试验设计方法的运作,我们知道试验设计必须花费较多的资源才能进行,而且对于生产型企业,试验设计的进行会打乱原有的生产稳定次序,所以确定试验目的和试验必要性是首要的任务。随着试验目标的确定,我们还必须定义试验的指标和接受的规格,这样我们的试验才有方向和检验试验成功的度量指标。这里的指标和规格是试验目的的延伸和具体化,也就是对问题解决的着眼点,指标的达成就能够意味着问题的解决。

 

第二步:剖析流程

关注流程,使我们应该具备的习惯,就像我们的很多企业做水平对比一样,经常会有一个误区,就是只讲关注点放在利益点上,而忽略了对流程特色的对比,试验设计的展开同样必须建立在流程的深层剖析基础之上。任何一个问题的产生,都有它的原因,事物的好坏、参数的变异、特性的欠缺等等都有这个特点,而诸多原因一般就存在于产生问题的流程当中。流程的定义非常的关键,过短的流程可能会抛弃掉显著的原因,过长的流程必将导致资源的浪费。我们有很多的方式来展开流程,但有一点必须做到,那就是尽可能详尽的列出可能的因素,详尽的因素来自于对每个步骤地详细分解,确认其输入和输出。其实对于流程的剖析和认识,就是改善人员了解问题的开始,因为并不是每个人都能掌握好我们所关注的问题。这一步的输出,使我们的改善人员能够了解问题的可能因素在哪里,虽然不能确定哪个是重要的,但我们至少确定一个总的方向。

 

第三步:筛选因素

流程的充分分析,是我们有了非常宝贵的资料,那就是可能影响我们关注指标的因素,但是到底哪个是重要的呢?我们知道,对一些根本就不或微小影响因素的全面试验分析,其实就是一种浪费,而且还可能导致试验的误差。因此将可能的因素的筛选就有必要性,这时,我们不需要确认交互作用、高阶效应等问题,我们的目的是确认哪个因素的影响是显著的。我们可以使用一些低解析度的两水平试验或者专门的筛选试验来完成这个任务,这时的试验成本也将最小处理。而且对于这一步任务的完成,我们可以应用一些历史数据,或者完全可靠的经验理论分析,来减少我们的试验因子,当然要注意一点就是,只要对这些数据或分析有很小的怀疑,为了试验结果的可靠,你可以放弃。筛选因素的结果,使得我们掌握了影响指标的主要因素,这一步尤为关键,往往我们在现实中是通过完全的经验分析得出,甚至抱着可能是的态度。

 

第四步:快速接近

我们通过筛选试验找到了关键的因素,同时筛选试验还包含一些很重要的信息,那就是主要因素对指标的影响趋势,这是我们必须充分利用的信息,它可以帮助我们快速的找到试验目的的可能区域,虽然不是很确定,但我们缩小了包围圈。这时我们一般使用试验设计中的快速上升(下降)方法,它是根据筛选试验所揭示的主要因素的影响趋势来确定一些水平,进行试验,试验的目的就像我们在寻找罪犯一样的缩小嫌疑范围,我们得出的一个结论就是,我们的改善最优点就在因素的最终反映的水平范围内,我们离成功更近了一步。

 

第五步:析因试验

在筛选试验时我们没有强调因素间的交互作用等的影响,但给出了主要的影响因素,而且快速接近的方法,使我们确定了主要因素的大致取值水平,这时我们就可以进一步的度量因素的主效应、交互作用以及高阶效应,这些试验是在快速接近的水平区间内选取得,所以对于最终的优化有显著的成效,析因试验主要选择各因素构造的几何体的顶点以及中心点来完成,这样的试验构造,可以帮助我们确定对于指标的影响,是否存在交互作用或者那些交互作用,是否存在高阶效应或者哪些高阶效应,试验的最终是通过方差分析来检定这些效应是否显著,同时对以往的筛选、快速接近试验也是一个验证,但我们不宜就在这样的试验基础上就来描述指标与诸主效应的详细关系,因为对于3个水平点的选取,试验功效会有不足的可能性。

 

第六步:回归试验

我们在析因试验中,确定了所有因素与指标间的主要影响项,但是考虑到功效问题,我们需要进一步的安排一些试验来最终确定因素的最佳影响水平,这时的试验只是一个对析因试验的试验点的补充,也就是还可以利用析因试验的试验数据,只是为了最终能够优化我们的指标,或者说有效全面的构建因素与水平的相应曲面和等高线,我们增加一些试验点来完成这个任务。试验点一般根据回归试验的旋转性来选取,而且它的水平应该根据功效、因子数、中心点数等方面的合理设置,以确保回归模型的可靠性和有效性。这些试验的完成,我们就可以分析和建立起因素和指标间的回归模型,而且可以通过优化的手段来确定最终的因子水平设定。当然为了保险起见,我们最后在得到最佳参数水平组合后进行一些验证试验来检验我们的结果。

 

第七步:稳健设计

我们知道,试验设计的目的就是希望通过设置我们可以调控的一些关键因素来达到控制指标的目的,因为对于指标来讲我们是无法直接控制的,试验设计提供了这种可能和途径,但是在现实中却还存在一类这样的因素,它对指标影响同样的显著,但是它很难通过人为的控制来确保其影响最优,这类因素我们一般称为噪声因素,它的存在往往会使我们的试验成果功亏一篑,所以对待它的方法,除了尽量的控制之外可以选用稳健设计的方法,目的是这些因素的影响降低至最小,从而保证指标的高优性能。事实上这些因素是普遍存在的,例如我们的汽车行驶的路面,不可能保证都是在高级公路上,那么对于一些差的路面,我们怎样来设计出高性能呢?这时我们会选择出一些抗干扰的因素来缓解干扰因素的影响,这就是稳健设计的意图和途径。通常我们会经常使用在设计和研发阶段,但有时也会随着问题的产生而暴露出来,但我们会提出一个问题了,重新选定主要因素的水平会不会带来指标的振荡和劣化,这是完全有可能的,但我们可以通过EVOP等途径来重新设定以保证因素更改后的输出效果。

 

小结:

1.试验设计需要成本的投入,我们必须确定试验进行的必要性,以及选取最优的设计方案。

2.水平的选取可能直接影响试验设计的结果,要谨慎的选取,最后有专业知识和历史数据的支持。

3.尽可能的利用一些历史数据,在确认可靠后提取对我们试验有用的信息,来尽量减少试验投资和缩短试验周期。

4.试验设计并不能提供解决所有问题的途径,现实当中的局限验证了这一点,我们要全面考虑解决问题的方式,选取最有效、最经济的解决途径。

5.注意充分的分析流程,不要遗漏关键的因素,不要被一些经验论的不可能结论左右。

6.除了试验设计涉及的因素外,要尽量确定所有的环境因素是稳定和符合现实的,往往会做不到这一点,我们可以用随机化、区组化来尽量避免。

7.注意结果的验证和控制,不要轻信结果。

8.尽量保证试验的仿真性,避免一些理想的试验环境,比如试验室,理想不现实的环境是的试验可能根本就没有作用。

9.试验设计者要关注试验过程,保证试验意图和方案的彻底执行。

10.如果实现一步到位的试验设计是可能的,那就不要犹豫的开展吧,上面的七步只是针对普通的情况。

 

DOE案例

 

DOE,即试验设计(DesignOf Experiment),是研究和处理多因子与响应变量关系的一种科学方法。它通过合理地挑选试验条件,安排试验,并通过对试验数据的分析,从而找出总体最优的改进方案。从上个世纪20年代费雪(Ronald Fisher)在农业试验中首次提出DOE的概念,到六西格玛管理在世界范围内的蓬勃发展,DOE已经历了80多年的发展历程,在学术界和企业界均获得了崇高的声誉。

 

然而,由于专业统计分析的复杂性和各行各业的差异性,DOE在很多人眼中逐渐演变为可望而不可及的空中楼阁。其实,DOE绝不是少数统计学家的专属工具,它很容易成为各类工程技术人员的好朋友、好帮手。本文将以一个日常生活中的小案例为线索,结合操作便捷的专业统计分析软件JMP,帮助大家揭开DOE的神秘面纱,了解DOE的执行过程,自由自在地建立属于自我的DOE空间。

 

场景:相信大家都吃过爆米花,但是大家是否都了解爆米花的制作过程?在品尝爆米花的时候,不知道您是否注意到有很多爆米花没有爆开,也有很多被爆焦。这两种情况都是生产过程中的质量缺陷。这里,我们基于六西格玛软件JMP来实现我们的目标:寻找使用微波炉加工一包爆玉米花的最佳程序。凭借经验,我们很容易就能确定重要因子的合理范围:

       加工爆玉米花的时间(介于 3 至 5 分钟之间)
  微波炉使用的火力(介于 5 至10 档之间)
  使用的玉米品牌(A 或B)

 

在爆玉米花时,我们希望所有(或几乎所有)的玉米粒都爆开了,没有(或很少)玉米粒未爆开。因此玉米的"爆开个数"是最终关注的重点。
 

第1步:定义响应和因子(如图1所示)

图1 定义响应和因子

 

第2 步:定义因子约束(如图2所示)
根据经验,你知道:不能在试验中长时间高火力加工爆玉米花,因为这样会烧焦某些玉米粒。不能在试验中短时间低火力加工爆玉米花,因为这样只有少数玉米粒爆开。所以要限制试验,以使加工时间加上微波炉火力小于等于 13,但大于等于 10。

图2 定义因子约束

 

第3 步:添加交互作用项(如图3所示)
我们可以推测:与爆开玉米比例相关的任意因子效应可能取决于某些其它因子的值。例如,品牌A时间变化的效应可能大于或小于使用品牌B相同时间变化的效应。这种因子表现出的协同效应统称为二因子交互作用。我们决定在爆玉米花加工过程的先验模型中纳入所有可能的二因子交互作用。

图3 添加交互作用项

 

第4 步:确定试验次数(如图4所示)
根据在模型中添加的效应,执行试验需要一定的试验次数。我们可以使用最小值、建议值,也可以指定试验次数,只要其值大于最小值。本例中,我们将使用默认的试验次数 16。

图4 确定试验次数

第5 步:指定输出表格(如图5所示)
 生成的数据表保留了随机化的特性,显示了我们应该运行试验的顺序,首先在7级火力下将第一包B牌的玉米加工 3 分钟,然后在5级火力下将B牌玉米加工5分钟,依次进行。

图5 指定输出表格

第6 步:收集和输入数据(如图6所示)
 根据设计方案加工爆玉米花。然后,计算每包中爆开的玉米粒的数量。最后,保存结果至数据表。

图6 收集和输入数据

第7 步:分析结果(如图7所示)
 可以构建数据模型了,一般使用最常见的分析方法--最小二乘法,但是如果响应数据明显不呈正态分布时,选择广义线形模型法会显得更为合适。

图7 分析结果

简要地查看输出报告中的"参数估计"表,发现所有的 p 值都小于 0.05,表明所有的模型效应,包括一次主因子作用、二次主因子作用和双因子交互作用,均是显著的。

我们已确认时间、火力以及品牌与爆开玉米粒个数之间存在着紧密关系,要进行进一步研究,可以打开"预测刻画器",分析因子组合的变化如何影响爆开玉米粒的个数。预测刻画器显示了每个因子对响应的预测轨迹,移动红色虚线,便能查看更改因子值对响应产生的影响。例如,单击"时间"图中的红线并左右拖动,当"时间"值从3转移至5时,"爆开个数"也在发生相应得变化。同时,随着时间的增加和减少,时间和火力预测轨迹的斜率也随之改变,表明确实存在时间和火力的交互效应。

最后,还可以通过"预测刻画器"寻找出最优设置,即最合意的设置。我们根据试验分析结果而推荐的方法是:使用A品牌,加工5分钟,并将火力调为6.96级。试验预测在此种设置下加工,产出的玉米粒445个以上都爆开了。

类似这种爆玉米花的案例在我们的生活和工作中还有很多很多,有兴趣的读者完全可以将平时遇到的问题抽象成一个DOE模型,然后借助JMP这样的专业统计分析软件,轻轻松松地得到问题的解决方案。

 

 

 

 

分享到:

来源:AnyTesting