您当前的位置:检测资讯 > 科研开发

首次在真实材料体系中发现了一种新颖的三维拓扑磁振子

嘉峪检测网        2018-07-05 17:17

首次在真实材料体系中发现了一种新颖的三维拓扑磁振子

近日,利用中子散射结合理论模拟对三维反铁磁体Cu3TeO6进行研究,首次在真实材料体系中观测到了三维拓扑磁振子激发。该研究成果以“Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet”为题,发表在《自然通讯》上[Nature Communications 9, 2591 (2018)]。

 

将“拓扑”这一数学概念引入物理学后,一方面推动了基础物理学研究的发展,另外一方面也促使了大量新颖拓扑量子材料的出现,例如石墨烯、拓扑绝缘体、三维狄拉克半金属以及外尔半金属等,大大地丰富了材料科学,为低耗散、更稳定的下一代电子器件的发展奠定了材料基础。这些材料中具有拓扑属性的准粒子是满足费米统计的电子,即费米子。这些费米子的能带具有拓扑性质,其两条线性交叉的色散可以用狄拉克或外尔方程进行描述,分别对应着狄拉克或外尔费米子。除此之外,还可能存在超越狄拉克-外尔框架的新的费米子,如三重简并费米子。与狄拉克或外尔费米子不同的是,三重简并费米子具有二条线性能带和一条平带交叉的能带结构。

 

实际上,根据拓扑能带理论,能带结构的拓扑属性不依赖于体系中准粒子的统计属性。这意味着除了拓扑费米子之外,拓扑玻色子也应当存在。到目前为止,拓扑玻色子在光子晶体、声子晶体等人造材料中被广泛实现,然而却很少在真实材料中被发现。磁振子作为自旋波量子——磁有序材料磁激发的准粒子,拥有玻色子的属性。虽然也有大量的理论工作提出了各种磁振子拓扑态,实验上一直鲜有报道,特别是在三维体系中,还未有拓扑磁振子态被发现。在拓扑磁振子系统中,非零的贝利曲率会导致电中性的磁振子具有反常热霍尔效应,并且非平庸的能带结构会使体系出现受拓扑保护的表面态,这些性质使得拓扑磁振子材料在发展高效率、低耗散的新型电子自旋器件上具有十分重要的应用前景。因此,在实验上找到这样的材料具有重要意义。

首次在真实材料体系中发现了一种新颖的三维拓扑磁振子

图1. a, Cu3TeO6的晶体及磁结构。为简洁起见,图中只标注了Cu原子。箭头为自旋示意图。b, 倒空间中的第一布里渊区以及各主要高对称点。c和d,中子散射实验所得到的分别沿着动量空间[001]和[111]方向的磁激发谱。c和d中的白线为理论计算的结果。虚线为b图所示的在动量空间中的位置。

 

北京大学李源与中科院物理所方辰课题组合作提出Cu3TeO6是一个狄拉克磁振子体系[PRL 119, 247202 (2017)]。如图1a所示,该材料具有立方结构,是一个三维共线的反铁磁体,磁矩方向指向体对角线方向。生长了该材料的高质量、大尺寸单晶,采用中子散射这一能够在动量-能量空间直接探测材料磁激发的手段对这些单晶进行了研究,得到了完整、清晰的磁激发谱,部分结果如图1c、d所示。从磁激发谱上看,高对称点位置,例如图1c的H点以及Γ点,能带交点清晰可见。结合对称性分析,这些交点具有稳定的拓扑属性。

 

为了进一步确认研究团队前期结论,该团队基于线性自旋波理论,采用一个以最近邻磁相互作用J1为主要项的模型进行了计算,很好地描述了实验观测到的磁激发谱。理论计算所得到的能带如图1c,d白线所示。分析表明,图1d中,在动量空间P点的不同能量位置存在三个狄拉克点,靠近这些狄拉克点的线性磁振子激发可以用狄拉克方程描述,因此这些准粒子为狄拉克磁振子。该结果跟早前的理论预言吻合得很好[PRL 119, 247202 (2017)]。

 

除了观察到理论所预言的狄拉克磁振子以外,该团队还发现了超越狄拉克-外尔方程的新型玻色子——三重简并磁振子。如图1c和d中的H和H’点,每个点都分别在两个能量出现三重简并点。Γ点同时存在一个狄拉克点以及一个三重简并点,但是在能量上比较接近,实验上难以分辨。这些高对称点上的能带交点,不依赖于理论模型,受到材料本身的对称性保护。我们的理论计算表明,在每一个三重简并点附近,磁振子能带由两条线性色散能带和一条平带交叉组成,因此,这些磁振子为三分量的磁振子,不同于狄拉克或外尔磁振子。

 

该工作首次在一个真实的三维磁性材料中观测到拓扑磁振子激发,丰富了材料科学;发现了一种狄拉克和三重简并磁振子共存的新颖拓扑态,加深了人们对于拓扑能带理论的理解;对于量子拓扑领域的发展具有重要意义。

分享到:

来源:南京大学