您当前的位置:检测资讯 > 科研开发
嘉峪检测网 2018-12-29 10:00
我们常常会说到三元锂电池或者铁锂电池,这些都是按照正极活性材料来给锂电池命名的。本文汇总六种常见锂电池类型以及它们的主要性能参数。大家都知道,相同技术路线的电芯,其具体参数并不完全相同,本文所显示的是当前参数的一般水平。六种锂电池具体包括:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍钴锰酸锂(LiNiMnCoO2或NMC)、镍钴铝酸锂(LiNiCoAlO2或称NCA)、磷酸铁锂(LiFePO4)和钛酸锂(Li4Ti5O12)。
钴酸锂(LiCoO2)
其高比能量使钴酸锂成为手机,笔记本电脑和数码相机的热门选择。电池由氧化钴阴极和石墨碳阳极组成。阴极具有分层结构,在放电期间,锂离子从阳极移动到阴极,充电过程则流动方向相反。 结构形式如图1所示。
|
图1: 钴酸锂结构 阴极具有分层结构。在放电期间,锂离子从阳极移动到阴极; 充电时流量从阴极流向阳极。钴酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。像其他钴混合锂离子电池一样,钴酸锂采用石墨阳极,其循环寿命主要受到固体电解质界面(SEI)的限制,主要表现在SEI膜的逐渐增厚,和快速充电或者低温充电过程的阳极镀锂问题。较新的材料体系增加了镍,锰和/或铝以提高寿命,负载能力和降低成本。 钴酸锂不应以高于容量的电流进行充电和放电。这意味着具有2,400mAh的18650电池只能以小于等于2,400mA充电和放电。强制快速充电或施加高于2400mA的负载会导致过热和超负荷的应力。为获得最佳快速充电,制造商建议充电倍率为0.8C或约2,000mA。电池保护电路将能量单元的充电和放电速率限制在约1C的安全水平。 六角蜘蛛图(图2)总结了与运行相关的具体能量或容量方面的钴酸锂性能;具体功率或提供大电流的能力; 安全; 在高低温环境下的性能表现; 寿命包括日历寿命和循环寿命; 成本特性。蜘蛛图中没有显示的其他重要特征还包括毒性,快速充电能力,自放电和保质期。 |
|
图2: 平均钴酸锂电池的蜘蛛图。
|
汇总表
钴酸锂氧化物: LiCoO 2阴极(约60%Co),石墨阳极 |
|
电压 |
标称值为3.60V; 典型工作范围3.0-4.2V /电池 |
比能(容量) |
150-200Wh /公斤。特种电池提供高达240Wh / kg。 |
充电(C率) |
0.7-1C,充电至4.20V(大部分电池);典型充电时长 3小时;1C以上的充电电流会缩短电池寿命。 |
放电(C率) |
1C;放电截止电压2.50V。1C以上的放电电流会缩短电池寿命。 |
循环寿命 |
500-1000,与放电深度,负荷,温度有关 |
热失控 |
150°C(302°F)。满充状态容易带来热失控 |
应用 |
手机,平板电脑,笔记本电脑,相机 |
注释 |
非常高的比能量,有限的比功率。钴很昂贵。被用作能量型电池。市场份额稳定。 |
表3:钴酸锂的特性
锰酸锂(LiMn2O4)
尖晶石锰酸锂电池首次发表于1983年的材料研究报告中。1996年,Moli能源公司将锰酸锂为阴极材料的锂离子电池商业化。该架构形成三维尖晶石结构,可改善电极上的离子流动,从而降低内部电阻并改善电流承载能力。尖晶石的另一个优点是热稳定性高,安全性提高,但循环和日历寿命有限。
低电池内阻可实现快速充电和大电流放电。18650型电芯,锰酸锂电池可以在20-30A的电流下放电,并具有适度的热量积累。也可以施加高达50A1秒负载脉冲。在此电流下持续的高负荷会导致热量积聚,电池温度不能超过80°C(176°F)。锰酸锂用于电动工具,医疗器械,以及混合动力和纯电动汽车。
图4说明在锰酸锂电池的阴极上形成三维晶体骨架。该尖晶石结构通常由连接成晶格的菱形形状组成,一般在电池化成后出现。
|
图4:锰酸锂结构。 |
锰酸锂的容量大约比钴酸锂低三分之一。设计灵活性使工程师能够选择最大限度地延长电池的使用寿命,或者提高最大负载电流(比功率)或容量(比能)。例如,18650电池的长寿命版本只有1,100mAh的适中容量; 高容量版本则达到1,500mAh。
图5显示了典型锰酸锂电池的蜘蛛图。这些特性参数似乎不太理想,但新设计在功率,安全性和寿命方面有所改进。纯锰酸锂电池今天不再普遍; 它们只在特殊情况下应用。
|
图5:纯锰酸锂电池的蜘蛛图。 |
大多数锰酸锂与锂镍锰钴氧化物(NMC)混合,以提高比能量并延长寿命。这种组合带来了每个系统的最佳性能,而大多数电动汽车,如日产Leaf,雪佛兰Volt和宝马i3都选用了LMO(NMC)。电池的LMO部分可以达到30%左右,可以在加速时提供较高的电流; NMC部分提供了很长的续航里程。
锂离子电池研究倾向于将锰酸锂与钴,镍,锰和/或铝组合作为活性阴极材料。在一些架构中,少量硅被添加到阳极。这提供了25%的容量提升; 然而,硅随着充放电膨胀和收缩,从而引起机械应力,容量提升通常与短的循环寿命紧密联系。
可以方便地选择这三种活性金属以及硅增强来提高比能(容量),比功率(负载能力)或寿命。消费电池需要大容量,而工业应用需要电池系统,具有良好的负载能力,寿命长,并提供安全可靠的服务。
汇总表
锰酸锂氧化物: LiMn2O4阴极,石墨阳极; |
|
电压 |
3.70V(3.80V)标称值; 典型工作范围3.0-4.2V /每只电池 |
比能(容量) |
100-150Wh / kg的 |
充电(C率) |
典型值为0.7-1C,最大值为3C,充电至4.20V(大部分电池) |
放电(C率) |
1C; 一些电池可以达到10C,30C脉冲(5s),2.50V截止 |
循环寿命 |
300-700(与放电深度,温度有关) |
热失控 |
典型值为250°C(482°F)。高电荷促进热失控 |
应用 |
电动工具,医疗设备,电动动力传动系统 |
注释 |
功率大但容量少; 比钴酸锂更安全; 通常与NMC混合以提高性能。 |
表6:锰酸锂氧化物的特性
镍钴锰酸锂(LiNiMnCoO2或NMC)
最成功的锂离子体系之一是镍锰钴(NMC)的阴极组合。与锰酸锂类似,这个体系可以定制用作能量电池或功率电池。例如,中等负载条件下的18650电池中的NMC具有约2,800mAh的容量并且可以提供4A至5A放电电流; 同一类型的NMC在针对特定功率进行优化时,容量仅为2,000mAh,但可提供20A的连续放电电流。硅基阳极将达到4000mAh以上,但负载能力降低,循环寿命缩短。添加到石墨中的硅具有缺陷,即阳极随着充电和放电而膨胀和收缩,使得电池机械应力大结构不稳定。
NMC的秘密在于镍和锰的结合。与此类似的是食盐,其中主要成分钠和氯化物本身是有毒的,但将它们混合起来作为调味盐和食品保存剂。镍以其高比能量而闻名,但稳定性差;锰尖晶石结构可以实现低内阻但比能量低。两种活性金属优势互补。
NMC是电动工具,电动自行车和其他电动动力系统的首选电池。阴极组合通常是三分之一镍,三分之一锰和三分之一钴,也被称为1-1-1。这提供了一种独特的混合物,由于钴含量降低,也降低了原材料成本。另一个成功的组合是NCM,其中含有5份镍,3份钴和2份锰(5-3-2)。也可以使用其他不同量的阴极材料组合。
由于钴的高成本,电池制造商从钴系转向镍阴极。镍基系统比钴基电池具有更高的能量密度,更低的成本和更长的循环寿命,但是它们的电压略低。
新型电解质和添加剂可以使单只电池充电至4.4V以上,从而提高电量。图7展示了NMC的特性。
|
图7:NMC的蜘蛛图。 |
由于该体系经济性和综合性能表现均比较好,因此NMC混合锂离子电池越来越受到重视。镍,锰和钴三种活性材料可轻松混合,以适应需要频繁循环的汽车和能源存储系统(EES)的广泛应用。NMC家族的多样性正在增长。
汇总表
锂镍锰钴氧化物: LiNiMnCoO2阴极,石墨阳极 |
|
电压 |
3.60V,标称3.70V; 电池典型工作范围3.0-4.2V或更高 |
比能(容量) |
150-220Wh/kg |
充电(C率) |
0.7-1C,充电至4.20V,一些至4.30V; 3小时典型充电。1C以上的充电电流会缩短电池寿命。 |
放电(C率) |
1C; 2C可能在某些电芯上可行; 2.50V截止 |
循环寿命 |
1000-2000(与放电深度,温度有关) |
热失控 |
典型的210°C(410°F)。高电荷促进热失控 |
应用 |
电动自行车,医疗设备,电动车,工业 |
注释 |
提供高容量和高功率。混合电芯。受到多种用途的欢迎,市场份额不断增加。 |
表8: 锂镍锰钴氧化物(NMC)的特性。
磷酸铁锂(LiFePO 4)
1996年,德克萨斯大学发现磷酸盐可作为再充电锂电池的阴极材料。磷酸锂具有良好的电化学性能和低电阻。这是通过纳米级磷酸盐阴极材料实现的。主要优点是高额定电流和长循环寿命;良好的热稳定性,增强了安全性和对滥用的容忍度。
如果长时间保持在高电压下,磷酸锂对全部充电条件的耐受性更强,并且比其他锂离子系统的应力更小。缺点是,较低的3.2V电池标称电压使得比能量低于钴掺杂锂离子电池。对于大多数电池来说,低温会降低性能,升高储存温度会缩短使用寿命,磷酸锂也不例外。磷酸锂具有比其他锂离子电池更高的自放电,这可能会引起老化进而带来均衡问题,虽然可以通过选用高质量的电池或使用先进的电池管理系统来弥补,但这两种方式都增加了电池组的成本。电池寿命对制造过程中的杂质非常敏感,不能承受水分的掺杂,由于水分杂质的存在有些电池最短寿命只有50个循环。图9总结了磷酸锂的属性。
常用磷酸锂代替铅酸起动蓄电池。四个串联电池产生12.80V,与六个2V铅酸电池串联的电压相似。车辆将铅酸充电至14.40V(2.40V/电池)并保持浮充状态。浮充的用意在于保持完全充电水平并防止铅酸电池硫酸化。
通过串联四个磷酸锂电池,每个电池的电压均为3.60V,这是正确的满充电电压。此时,应该断开充电,但驾驶时继续充电。磷酸锂容忍一些过度充电; 然而,由于大多数车辆在长途旅行中长时间保持电压在14.40V,可能会增加磷酸锂电池的机械应力。时间会告诉我们磷酸锂作为铅酸电池的替代品能够承受多长时间的过充电。低温也会降低锂离子的性能,可能会影响极端情况下的起动能力。
|
图9:典型磷酸锂电池的蜘蛛图。 |
汇总表
磷酸铁锂: LiFePO4阴极,石墨阳极 |
|
电压 |
3.20,标称值3.30V; 典型工作范围2.5-3.65V |
比能(容量) |
90-120Wh/kg |
充电(C率) |
1C典型,充电至3.65V;典型的3小时充电时间 |
放电(C率) |
1C,25C在一些电芯上可行; 40A脉冲(2s); 2.50V截止(低于2V导致损坏) |
循环寿命 |
1000-2000(与放电深度,温度有关) |
热失控 |
270°C(518°F)即使充满电,电池也非常安全 |
应用 |
便携式和固定式,需要高负载电流和耐久性的应用场景 |
注释 |
非常平坦的电压放电曲线但容量低。最安全的 |
表10:磷酸铁锂的特性
镍钴铝酸锂(LiNiCoAlO2或称NCA)
镍钴铝酸锂电池或NCA自1999年以后被应用。它具有较高的比能量,相当好的比功率和长的使用寿命与NMC有相似之处。不太讨人喜欢的是安全性和成本。图11总结了六个关键特征。NCA是锂镍氧化物的进一步发展;加入铝赋予电池更好的化学稳定性。
|
图11:NCA的蜘蛛图。 |
汇总表
镍钴铝酸锂: LiNiCoAlO2阴极(〜9 %Co),石墨阳极 |
|
电压 |
标称值为3.60V;典型工作范围3.0-4.2V |
比能(容量) |
200-260Wh/公斤; 预测可以达到300Wh/kg |
充电(C率) |
0.7C,充电至4.20V(大多数电池),典型的3小时充电,一些电池可以快速充电 |
放电(C率) |
1C典型;截止3.00V;高放电速率会缩短电池寿命 |
循环寿命 |
500(与放电深度,温度有关) |
热失控 |
典型值为150°C(302°F),高电荷会导致热失控 |
应用 |
医疗设备,工业,电动动力总成(特斯拉) |
注释 |
与钴酸锂有相似之处。能量型电池。 |
表12:镍钴铝酸锂的特性
钛酸锂(Li4Ti5O12)
自二十世纪八十年代以来,钛酸锂阳极的电池已为人所知。钛酸锂代替典型锂离子电池阳极中的石墨,并且材料形成尖晶石结构。阴极可以是锰酸锂或NMC。钛酸锂的标称电池电压为2.40V,可以快速充电,并提供10C的高放电电流。据说循环次数高于常规锂离子电池的循环次数。钛酸锂是安全的,具有出色的低温放电特性,在-30°C(-22°F)时可获得80%的容量。
LTO(通常是Li4Ti5 O12)零应变,没有SEI膜形成和在快速充电和低温充电时无锂电镀现象,因而具有优于传统的钴掺混的Li-离子与石墨阳极的充放电性能。高温下的热稳定性也比其他锂离子体系好; 然而,电池价格昂贵。比能量低,只有65Wh/kg,与NiCd相当。钛酸锂充电至2.80V,放电结束时为1.80V。图13显示了钛酸锂电池的特性。典型用途是电动动力传动系统,UPS和太阳能路灯。
|
图13:钛酸锂蜘蛛图。 |
汇总表
钛酸锂:可以是锰酸锂氧化物或NMC; Li4Ti 5O12(钛酸盐)阳极 |
|
电压 |
2.40V标称值; 典型工作范围1.8-2.85V; |
比能(容量) |
50-80Wh/kg |
充电(C率) |
1C典型; 最大5C,充电至2.85V |
放电(C率) |
10C可能,30C 5s脉冲; LCO/LTO截止电压1.80V |
循环寿命 |
3,000-7,000 |
热失控 |
一种最安全的锂离子电池 |
应用 |
UPS,电动动力总成(三菱i-MiEV,本田飞度EV), |
注释 |
寿命长,充电快,温度范围宽,比能量低,价格昂贵。最安全的锂离子电池。 |
表14:钛酸锂的特性
图15比较了基于铅,镍和锂体系的比能。虽然锂铝(NCA)通过比其他系统储存更多容量而成为明显的赢家,但它仅适用于特定场景的电源使用。就比功率和热稳定性而言,锰酸锂(LMO)和磷酸锂(LFP)优异。钛酸锂(LTO)的容量可能较低,但它的寿命超过了其他大多数电池,并且具有最佳的低温性能。
图15:铅,镍和锂基电池的典型比能量
NCA享有最高的比能量; 然而,锰酸锂和磷酸铁锂在比功率和热稳定性方面优越。钛酸锂具有最好的使用寿命。
来源:锂电联盟会长