您当前的位置:检测资讯 > 实验管理

差热分析方法 差热分析原理 差热分析应用

嘉峪检测网        2016-08-02 10:13

材料热差分析咨询:400-9700-076

 

热分析方法

热分析是利用热学原理对物质的物理性能或成分进行分析的总称。根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)对热分析法的定义:热分析是在程序控制温度下,测量物质的物理性质随温度变化的一类技术。所谓“程序控制温度 ”是指用固定的速率加热或冷却,所谓“物理性质”则包括物质的质量、温度、热焓、尺寸、机械、声学、电学及磁学性质等

 

热分析的发展历史可追溯到两百多年前。1780年英国的Higgins在研究石灰粘结剂和生石灰的过程中第一次使用天平测量了实验受热时所产生的重量变化, 1915年日本的本多光太郎提出了“热天平”概念并设计了世界上第一台热天平。1899年,英国的Roberts和Austen采用两个热电偶反相连接,采用差热分析的方法直接记录样品和参比物之间的温差随时间变化规律;至二次大战以后,热分析技术得到了飞快的发展,20世纪40年代末商业化电子管式差热分析仪问世,60年代又实现了微量化。1964年,Wattson和O’Nei11等人提出了“差示扫描量热”的概念,进而发展成为差示扫描量热技术,使得热分析技术不断发展和壮大。

 

经过数十年的快速发展,热分析已经形成一类拥有多种检测手段的仪器分析方法,它可用于检测的物质因受热而引起的各种物理、化学变化,参与各学科领域中的热力学和动力学问题的研究,使其成为各学科领域的通用技术,并在各学科间占有特殊的重要地位。

 

差热分析(Differential Thermal Analysis—DTA)法

差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。

 

最早的差热分析仪器是1887年Le Chatelier为了研究粘土矿物而制作的。该装置使用时一边加热一边用光学自动记录仪记录物质的温度,完全靠手工操作,因此误差很大。1899年英国的W.C.Roberts-Austen(罗卜兹-奥斯坦)第一次采用示差法进行了仪器改造,他采用标准物质与被测物质进行比较的方法,记录两者温度差,得到的电解铁的DTA曲线,被认为是第一条现代意义上的DTA曲线。随着电子技术的发展,差热分析仪器无论在结构上还是在性能上都有了很大改进,最大限度上脱离了手工操作、记录等繁琐手续,实现了温度控制和记录的自动化,降低了外界干扰,提高了测试精度。目前的仪器测试范围可用-190℃到2000℃以上,可控制测试气氛和压力,并可和其他仪器组合使用。

 

目前,国内外已有多家生产该类型仪器的企业,差热分析法与现代各种研究方法综合使用,相互补充,已成为材料研究中最为常用的方法之一。

 

差热分析原理结构

  

差热曲线

物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分 解、化合、吸附、脱附等物理或化学变化,并伴随有焓的改变,因而产生热效应,其表现为样品与参比物之间有温度差。记录两者温度差与温度或者时间之间的关系曲线就是差热曲线(DTA曲线)。

  

结构组成

一般的差热分析装置由加热系统、温度控制系统、信号放大系统、差热系统和记录系统等组成。有些型号的产品也包括气氛控制系统和压力控制系统。现将各部分简介如下:

  

1) 加热系统  

加热系统提供测试所需的温度条件,根据炉温可分为低温炉(<250℃)、普通炉、超高温炉(可达2400℃);按结构形式可分为微型、小型,立式和卧式。系统中的加热元件及炉芯材料根据测试范围的不同而进行选择。

  

2)温度控制系统  

温度控制系统用于控制测试时的加热条件,如升温速率、温度测试范围等。它一般由定值装置、调节放大器、可控硅调节器(PID-SCR)、脉冲移相器等组成,随着自动化程度的不断提高,大多数已改为微电脑控制,提高的控温精度

 

3)信号放大系统  

通过直流放大器把差热电偶产生的微弱温差电动势放大、增幅、输出,使仪器能够更准确的记录测试信号。

  

4)差热系统  

差热系统是整个装置的核心部分,由样品室、试样坩埚、热电偶等组成。其中热电偶是其中的关键性元件,既是测温工具,又是传输信号工具,可根据试验要求具体选择。

  

5)记录系统

记录系统早期采用双笔记录仪进行自动记录,目前已能使用微机进行自动控制和记录,并可对测试结果进行分析,为试验研究提供了很大方便。

  

6)气氛控制系统和压力控制系统  

该系统能够为试验研究提供气氛条件和压力条件,增大了测试范围,目前已经在一些高端仪器中采用。

 

差热分析应用  

凡是在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应的物质,均可以用差热分析法加以鉴定。其主要应用范围如下:

 

1)水

对于含吸附水、结晶水或者结构水的物质,在加热过程中失水时,发生吸热作用,在差热曲线上形成吸热峰。

  

2)气体 

一些化学物质,如碳酸盐、硫酸盐及硫化物等,在加热过程中由于CO2、SO2等气体的放出,而产生吸热效应,在差热曲线上表现为吸热谷。不同类物质放出气体的温度不同,差热曲线的形态也不同,利用这种特征就可以对不同类物质进行区分鉴定。

  

3)变价 

矿物中含有变价元素,在高温下发生氧化,由低价元素变为高价元素而放出热量,在差热曲线上表现为放热峰。变价元素不同,以及在晶格结构中的情况不同,则因氧化而产生放热效应的温度也不同。如Fe2+在340~450℃变成Fe3+

  

4)重结晶  

有些非晶态物质在加热过程中伴随有重结晶的现象发生,放出热量,在差热曲线上形成放热峰。此外,如果物质在加热过程中晶格结构被破坏,变为非晶态物质后发生晶格重构,则也形成放热峰。

  

5)晶型转变  

有些物质在加热过程中由于晶型转变而吸收热量,在差热曲线上形成吸热谷。因而适合对金属或者合金、一些无机矿物进行分析鉴定。

 

差热分析影响因素  

差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好的重现性。

 

影响仪器仪表差热分析的主要因素

  

(1)气氛和压力的选择  

气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。

  

(2)升温速率的影响和选择  

升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择10℃/min~15℃/min为宜。

  

(3)试样的预处理及用量  

试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。

  

(4)参比物的选择  

要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。

  

常用三氧化二铝(α-Al2O3)或煅烧过的氧化镁或石英砂作参比物。如分析试样为金属,也可以用金属镍粉作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、Al2O3等。

  

(5)纸速的选择  

在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小;走纸速率小,峰面积小。因此,要根据不同样品选择适当的走纸速度。现在比较先进的差热分析仪多采用电脑记录,可大大提高记录的精确性。

  

除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等都是应该考虑的因素。

  

差热分析发展前景

差热分析从被发明以后,迅速应用于各个研究领域,成为分析金属、陶瓷及高分子物质的有效工具,并且被不断发展。1935年发展了定量差热分析方法,可以精确的确定矿物在混合物中的含量。麦西尔斯提出了微量DTA法,使差热测试的灵敏度和分辨率得到很大提高,因而得到了迅速发展。20世纪60年代,差示扫描量热法(DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。

  

因此,差热分析法由于具有诸多优势,已成为材料研究中不可缺少的测试方法,随着科研需求的扩大和仪器制造技术的进步,差热分析法一定会有更大的发展。国家纳米技术与工程研究院做此项检测效果不错。

 

差热分析

分享到:

来源:复材应用技术