您当前的位置:检测资讯 > 科研开发

一文了解硅光通信铌酸锂光器件技术

嘉峪检测网        2025-03-09 18:01

一、集成电路发展

 

1947年,贝尔实验室成功制备出了第一支晶体管,克服了电子管体积大、功耗高和结构脆弱的缺点,揭开了集成电路(Integrated circuit , IC)的序幕。

 

几十年以来,其按照摩尔定律预测的那样发展着,即半导体芯片的集成度每18个月增长一倍,而价格却降低一半。

 

然而,随着器件的加工线宽发展到纳米量级和集成度的不断提高,集成电路面临制备工艺达到极限和发热量持续增加的问题,亟需新的解决方案。

 

与电子集成将晶体管、电容器和电阻器等电子器件集成类似,光子集成(Photonic integrated circuit, PIC)是将各种光子器件集成在一起,如:电光调制器、 激光器、 光放大器、 光电探测器和光复用/解复用器等。

 

 

二、光子集成技术的出现

 

PIC的概念从20世纪60年代后期开始提出, 20世纪70年代后期开始从实验室走入实际应用。

 

集成光子器件主要由微米或纳米量级宽度的光波导构成。

 

将多个光子器件集成在同一块衬底上, 充分利用电光效应、 热光效应和磁光效应等对光进行调制, 具有小型化、 低成本、 调制效率高、 功率密度高和低功耗的优点。

 

到目前为止, 各种制备工艺的进步(如: 溅射技术、 化学气相沉积技术、 刻蚀技术和光刻技术) 为光子器件精细的结构制备提供了技术支持。 光子集成技术正在快速发展, 一些新的应用也会随工艺的改进而显现出来, 促进社会的进步和发展。

 

硅是应用最广泛的半导体材料, 带隙为1.12eV, 属于间接带隙半导体。 硅的导电性会因温度、 掺杂浓度和光辐照强度变化而显著变化, 广泛应用于集成电路。

 

绝缘体上硅(Siliconon insulator ,SOI)技术, 即使用一薄的绝缘层将硅薄膜和硅衬底隔离开,给电子集成器件带来许多的好处,pn结的面积减小, 因而寄生电容和结的漏电电流减小, 使器件工作速度高、 功率低; 容易实现理想的浅结, 使得短沟效应得到改善, 使得芯片面积减小; 可以简化器件工艺,提高器件良率, 降低生产成本; 衬底仍然为硅, 为微电子或纳电子芯片提供所需的优质衬底。

 

同时, 硅基光子集成可以与电子芯片的互补金属氧化物半导体( Compementary meta oxide-semi conductor , CMOS) 制备工艺兼容, 可以充分利用电子集成芯片成熟的加工工艺, 实现较低的生产成本和批量生产。

 

SOI的结构示意图如图所示, 从上到下依次为: Si薄膜, SiO2绝缘层和Si衬底。

 

 

图中(b)和(c)分别为浅刻蚀和深刻蚀的Si波导的TE模式分布图(波长1550nm)。 波长为1550nm时, Si的折射率为3.48, SiO2的折射率为1.46, Si和SiO2之间存在大的折射率差, 使得Si 波导对光具有很强的限制能力,波导中光模式尺寸小和弯曲损耗低, 大大减小了器件的体积和提高了光子器件在SOI 上的集成密度。

 

正是因为SOI的这些优点, 使其在集成光子学中成为一个极具吸引力的材料平台。

 

得益于成熟的CMOS工艺, 各种无源光波导器件已经在SOI上实现。 

 

如:定向耦合器、 分支器 、 波导布拉格光栅 、 阵列波导光栅、 马赫曾德尔干涉仪和环形谐振器等, 如下图所示。

 

在Si 中进行掺杂, 利用载流子色散效应来实现电光调制, 可以在SOI上实现电光调制器。 主要有三类调制机制: 载流子注入、 载流子积累和载流子耗尽, 如图所示。

 

 

其中, 载流子耗尽可以获得最高的调制速度。 但是, 自由载流子色散本质上是吸收的和非线性的, 这降低了光调制幅度, 并且在使用先进的调制格式时可能导致信号失真。

 

三、铌酸锂光子集成技术

 

铌酸锂(LN) 晶体具有卓越的电光、 声光、 非线性光学、 光折变、 压电、 铁电、 光弹和热释电等效应, 且机械性能稳定和具有宽的透明窗(0.3-5μm),在集成光学中有广泛的应用。

 

基于铌酸锂晶体上传统的光波导制备方法制备的光波导, 如: 离子注入、 质子交换和钛扩散法,具有小的折射率差, 大的波导弯曲半径导致器件尺寸大, 限制了其在集成光学中的应用。

 

铌酸锂薄膜( LNOI) 具有较大的折射率对比度, 这可以使波导具有仅数十微米的弯曲半径和亚微米量级的波导截面, 允许高密度的光子集成和强的光限制来增强光与物质相互作用。

 

LNOI 可以通过脉冲激光沉积、容胶凝胶法、 射频磁控溅射和化学气相沉积法等方法制备, 但这些方法获得的LNOI呈现出多晶结构的性质, 造成光传输损耗明显增加。 其次, 薄膜的物理性质和指标与单晶LN也存在明显的差距, 这无疑会对光子器件的性能产生不良影响。

 

1998年, M.Levy 等人采用离子注入和横向刻蚀相结合的方法制备了单晶LN薄膜。目前, 随着制备技术的不断提高, 高质量、大尺寸的LNOI 晶圆已经商业化, 促进了LN集成光子学的发展, LN薄膜厚度可以为300-900nm, 晶圆尺寸可达8英寸。

 

LNOI的制备是使用离子注入、 直接键合和热退火等一系列过程, 从LN体材料中物理剥离LN薄膜并将其转移到衬底上同时, 研磨和抛光的方法也可以产生高质量的 LNOI。 该方法避免了离子注入过程对 LN 晶体晶格的损伤, 对晶体质量影响较小, 但对薄膜厚度均匀性控制要求严格。

 

LNOI不仅保留了LN体材料的电光、 声光和非线性光学等物理性质, 而且具有单晶结构, 有利于实现低的光传输损耗。

 

下图显示了LNOI的结构示意图,以及浅刻蚀和深刻蚀的LN波导的 TE 模式分布图(波长1550nm)。

 

光波导是集成光子学的基本器件之一 , 光波导的制备方法有多种。 

 

LNOI上的光波导可以采用传统的光波导制备方法制备, 如质子交换。 LN化学惰性强, 为避免LN的刻蚀, 可以在LNOI上沉积容易刻蚀的材料来制备加载条波导,加载条材料有: TiO2、SiO2、 SiNx、 Ta2O5、 硫属化合物玻璃和Si等。

 

利用化学机械抛光方法制备的LNOI 光波导实现了传播损耗0. 027dB/cm, 但是其较浅的波导侧壁使小弯曲半径波导的实现比较困难。

 

利用等离子刻蚀的方法制备的LNOI 波导实现了0.027dB/cm的传输损耗, 这是一个里程碑式的进步, 意味着可以实现大规模的光子集成和单光子级处理。

 

除了光波导, 许多高性能的光子器件也在LNOI 上制备了, 如: 微环/微盘谐振器、 端面和光栅耦合器以及光子晶体等。 此外, 诸多功能光子器件也得以实现。 利用LN晶体卓越的电光和非线性光学效应, 在LNOI 上实现了高带宽光电调制、 高效率的非线性转换和电光可控光频梳产生等多种光子功能器件。 

 

LN还具有声光效应, 在LNOI 上制备的声光M-Z调制器, 利用悬浮铌酸锂薄膜上的光力学相互作用, 将频率4.5GHz的微波转换为了1500nm波长的光, 实现了微波光信号的高效转换。

 

在蓝宝石衬底的LN薄膜上制备的声光调制器, 因为蓝宝石具有高的声速, 可以避免器件的悬浮结构,同时减小了声波能量的泄露。

 

在LNOI上制备的集成声光移频器, 其移频效率髙于氮化铝薄膜上的声光移频器。激光器和放大器在稀土掺杂的LNOI上已经取得了重大进展。

 

然而, LNOI的稀土掺杂区域对通讯光波段有明显的光吸收, 限制了其大规模光子集成。 在LNOI 上探索局部稀土掺杂将是解决这一问题的好方法。 在LNOI 上沉积非晶硅可以制备光电探测器, 制备的金属半导体,金属光电探测器在波长635-850nm的响应度为22-37mA/ W。

 

同时, 将III-V族半导体激光器和探测器异质集成到LNOI上, 也是在LNOI上实现激光器和探测器的好方案, 但是制备工艺复杂,成本高, 需要完善工艺降低成本, 提高成功几率。 LNOI上的各种集成光子器件如下图所示:

 

 

 

四、硅和铌酸锂复合薄膜技术

 

Si是广泛应用的半导体材料, 具有重要的电子学和微加工优势。

 

SOI 给电子集成器件带来了诸多好处, 广泛应用于集成电路。 同时, SOI还具有如下优点: Si 和SiO2之间具有大的折射率差,使其具有很强的限光能力和小的波导弯曲半径; 在1200nm以上波段具有低的光吸收; 基于SOI的光子器件可以用CMOS工艺制备。 这使其在集成光学中也成为一种极具吸引力的材料平台。但是, Si是中心对称晶体,缺乏电光、 声光和非线性光学等效应, 阻碍了其在集成光学中的发展。 

 

如果将Si薄膜和LN薄膜结合在一起,就可以实现材料性能互补和充分利用。

 

 

LNOI保留了LN 体材料卓越的电光、 声光和非线性光学等效应, 同时具有大的折射率对比度, 被认为是一种极具潜力的集成光学材料平台。

 

参考文献:

 

(1)李青云 硅和铌酸锂复合薄膜及相关光子器件的研究[D].

 

(2)彭茂荣 2024年半导体产业发展议题[C].

 

(3)赵磊 投影光刻物镜像质补偿策略与补偿技术研究[D].

分享到:

来源:半导体全解