您当前的位置:检测资讯 > 实验管理
嘉峪检测网 2015-08-03 22:47
聚合物材料在储存和使用过程中,会因受到各种环境因素(如紫外光、热、湿、臭氧、微生物等)和工况因素(如应力、电场、磁场、介质等)的影响而发生光氧降解、热降解、化学降解、生物降解等,导致各项性能逐渐下降,直至破坏。因此,对聚合物材料的老化失效机制及寿命预测研究具有非常重要的意义。以橡胶密封材料为例,它所制备的制品,如垫片、O形圈、皮碗、油封、活门等常在机械装备中处于关键部位,同时又往往是部件或组合件的薄弱环节。若其丧失密封能力就不得不拆开更换,否则可能会导致整个产品报废。
橡胶老化的实质是橡胶分子链的交联或断裂,多为自动催化氧化机理。橡胶的生胶种类及其组成在很大程度上决定了制品的老化稳定性,如硅橡胶和氟橡胶的耐热性要优于丁腈橡胶(NBR)的;氢化丁腈橡胶(HNBR)的饱和度越高,热稳定性越好;随着丙烯晴(AN)含量增加,NBR的耐油性能和耐老化性能提高,但同时其密封性能和耐低温性能下降。橡胶的硫化体系、稳定体系、填料和增塑剂等都会对基体的老化性能产生影响。对于容易水解或具有一定亲水性的硅橡胶或聚氨酯橡胶,湿度会加速其老化。在使用过程中,橡胶密封材料经常要承受一定的形变量,并与油介质接触,这就使得材料的老化过程不单单是热氧降解过程,还要考虑油介质和应力的影响。
通常通过加速热氧老化试验对橡胶的寿命进行评价,即在较高温度下进行加速老化试验,将测定结果用Arrhenius公式向使用(服役)温度下进行外推的方法来预测寿命。这就要求在所考察的温度范围内,导致降解的机理不发生变化。在大多数情况下,Arrhenius方法都被证明是适用的,但也有不少研究者报道了橡胶老化的Non-Arrhenius行为并不完全适用。如,Bernstein等在研究氟硅胶的加速老化时发现,其压缩应力松弛行为的Arrhenius曲线在80℃下出现了偏离,使得高温段和低温段表现为两个活化能(73kJ·mol-1和29kJ·mol-1)。由低温段活化能计算得到50%性能损失对应的寿命为17年,而直接由高温段活化能外推得到的寿命则长达900年。如此巨大的差别表明,实际的老化条件与加速老化不同,从而导致老化机理发生变化,或者在不同的温度范围内老化机理发生变化,这都会使得简单的外推结果变得不可靠。但目前的研究工作多从工程应用的实际需求出发,关注的重心放在力学性能(如强度、硬度、压缩永久变形、应力松弛、弹性回复率等)上,关于橡胶在不同条件下的老化机理研究却很少涉及,这就使得寿命预测仍采用加速热氧老化方法,对橡胶使用环境中复杂的温湿度条件的影响、应力效应、介质效应等都有相当多的研究空白。
橡胶在热氧化过程中会生成各种氧化产物,并在制品的厚度方向存在明显的分布,其交联密度也会发生变化。作者对NBR在空气和润滑油中的热氧老化行为及机理进行了深入研究后发现,NBR在空气中的老化过程可以分为三个阶段。第一阶段主要是添加剂(增塑剂、抗氧剂等)的迁移。第二阶段,氧化反应和交联反应占主导,表现为交联度的增大和硬度的提高,同时弹性回复率下降。到了热氧老化后期的第三阶段,严重的氧化甚至会导致分子链断裂,但此时,NBR的弹性几乎已完全丧失,不能作为密封材料使用。在这个过程中,抗氧剂的含量变化是个很重要的指标,当其含量下降到一个临界值时,弹性回复率会急剧下降,同时硬度会急剧上升,使其丧失使用性能。当NBR在润滑油中热老化时,首先,由于润滑油向橡胶中扩散,使得橡胶能够在较长时间内保持良好的回弹性能。第二,尽管润滑油在一定程度上阻碍了氧气的扩散,但由于橡胶分子链的活动性增强,在油中的氧化程度反而较高。如果是不同黏度的同一类油,则在低黏度油中的氧化程度要高于在高粘度油中的。第三,润滑油对添加剂的萃取作用使得橡胶中添加剂的迁移速度较快。
作为密封材料使用时,橡胶都会受到应力作用,并随时间发生松弛。Sandia国家实验室的Gillen等研究了不同温度下一定应变量丁基橡胶的应力松弛行为,发现在有应变的条件下应力松弛速度明显加快。
当橡胶密封材料在动密封和有润滑的情况下使用时,橡胶的摩擦磨损性能则必须考虑。橡胶的摩擦因数是液体、粘接和形变共同的贡献。粘接是分子水平的连接和破坏,随弹性模量的下降而减小,是粘弹性的函数。橡胶的滞后摩擦是耗能过程,伴随内部阻尼,但随弹性模量的下降而增大。磨损是局部破坏,是交联网络分解成小分子的结果。如果是尖锐表面,磨损导致拉伸破坏;如果是钝表面,则导致疲劳破坏。不同的油介质对橡胶摩擦磨损性能的影响也不同,如酯类基础油对NBR力学性能的劣化要比矿物油和聚烯烃合成油(PAO)更严重。
来源:中国腐蚀与防护网